化簡:
(1)sin75°cos34°+sin15°cos56°
(2)cos(
π
6
-α)sinα+cos(
π
3
+α)cosα
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用兩角和差的正弦公式、誘導(dǎo)公式即可得出.
解答: 解:(1)原式=sin75°cos34°+cos75°sin34°=sin(75°+34°)=sin71°.
(2)原式=sinαcos(
π
6
-α)+cosαsin(
π
6
-α)
=sin(α+
π
6
-α)
=sin
π
6
=
1
2
點評:本題考查了兩角和差的正弦公式、誘導(dǎo)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={-4,0},B={x|(x+a)(x+4)=0},若A∪B=B,求實數(shù)a構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,射線OA的方程為y=
3
x(x>0),動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△QOP的面積為2
3

(1)求線段PQ的中點M的軌跡C方程;
(2)設(shè)R1、R2是曲線C上的兩個動點,R1、R2到y(tǒng)軸的距離之和為1,求R1、R2到x軸的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
2sin50°+
3
cos10°(1+
3
tan10°)
cos20°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=4,且各項均滿足an+2=an+1+2an,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x2-2x-3
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集合為R,集合A={x|x2+6x+8>0},集合B={x||2x+8|<12}.求∁UA∪B、∁U﹙A∪B﹚、∁U﹙A∩B﹚.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={6,8,9},B={1,3,7,8,9},C={2,6,8,9},求出下列集合,并用Venn圖表示.
(1)A∪B,A∩C,B∩C;
(2)A∩B∩C,A∪B∪C;
(3)A∩(B∪C),(A∩B)∪(A∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x∈R,x2+ax+1≥0”是真命題,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案