14.(文)在數(shù)列{an}中,a1=2,且對任意大于1的正整數(shù)n,點($\sqrt{{a}_{n}}$,$\sqrt{{a}_{n-1}}$)在直線y=x-$\sqrt{2}$上,則$\underset{lim}{n→∞}$$\frac{{a}_{n}}{(n+1)^{2}}$=2.

分析 由代入法,再由等差數(shù)列的定義和通項公式,可得$\sqrt{{a}_{n}}$=$\sqrt{2}$+$\sqrt{2}$(n-1)=$\sqrt{2}$n,即an=2n2.再由數(shù)列極限的運算和公式,計算即可得到所求值.

解答 解:點($\sqrt{{a}_{n}}$,$\sqrt{{a}_{n-1}}$)在直線y=x-$\sqrt{2}$上,可得
$\sqrt{{a}_{n-1}}$=$\sqrt{{a}_{n}}$-$\sqrt{2}$,即為$\sqrt{{a}_{n}}$-$\sqrt{{a}_{n-1}}$=$\sqrt{2}$,
可得數(shù)列{$\sqrt{{a}_{n}}$}為首項為$\sqrt{2}$,公差為$\sqrt{2}$的等差數(shù)列,
即有$\sqrt{{a}_{n}}$=$\sqrt{2}$+$\sqrt{2}$(n-1)=$\sqrt{2}$n,即an=2n2
則$\underset{lim}{n→∞}$$\frac{{a}_{n}}{(n+1)^{2}}$=$\underset{lim}{n→∞}$$\frac{2{n}^{2}}{{n}^{2}+2n+1}$
=$\frac{2}{1+\underset{lim}{n→∞}\frac{2}{n}+\underset{lim}{n→∞}\frac{1}{{n}^{2}}}$=$\frac{2}{1+0+0}$=2.
故答案為:2.

點評 本題考查等差數(shù)列的定義和通項公式的運用,考查數(shù)列極限的求法,注意運用極限公式:$\underset{lim}{n→∞}$$\frac{1}{n}$=$\underset{lim}{n→∞}$$\frac{1}{{n}^{2}}$=0,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=lg(1+x)-lg(1-x)的圖象( 。
A.關(guān)于原點對稱B.關(guān)于直線y=-x對稱
C.關(guān)于y軸對稱D.關(guān)于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知冪函數(shù)f(x)=(a2-9a+19)x2a-9的圖象恒不過原點,則實數(shù)a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.對于實數(shù)a,b,c,給出下列命題:
①若a>b,則ac2>bc2;
②若0>a>b,則$\frac{1}{a}<\frac{1}$;
③若a>b,$\frac{1}{a}<\frac{1}$,則a>0,b<0;
④若a>b>c>0,則$\frac{a}{a+c}>\frac{b+c}$.其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.等比數(shù)列{an}首項為sinα,公比為cosα,若$\underset{lim}{n→∞}$(a1+a2+…+an)=-$\sqrt{3}$,則α=-$\frac{2π}{3}$+2kπ,k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)直線3x-4y+5=0的傾斜角為α,則sinα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)全集U={1,2,3,4,5}.集合A={1,2,3},B={2,4,5},那么)(CUA)∩(CUB)是( 。
A.B.{4}C.{1,3}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某商店預備在一個月內(nèi)分批購入每張價值為20元的書桌共36臺,每批都購入x臺(x是正整數(shù)),且每批均需付運費4元,儲存購入的書桌一個月所付的保管費與每批購入書桌的總價值(不含運費)成正比,若每批購入4臺,則該月需用去運費和保管費共52元,現(xiàn)在全月只有48元資金可以用于支付運費和保管費.
(1)求該月需用去的運費和保管費的總費用f(x);
(2)能否恰當?shù)匕才琶颗M貨的數(shù)量,使資金夠用?寫出你的結(jié)論,并說明理由.
(3)要使該月用于支付運費和保管費的資金費用最少,每批進貨的數(shù)量應為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列關(guān)于命題的說法錯誤的是( 。
A.若命題p:?n∈N,2n>1000,則¬p:?n∈N,2n≤1000
B.命題“若x2-3x+2=0,則x=1”,逆否命題為“若x≠1,則x2-3x+2≠0”;
C.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件;
D.命題“?x∈(-∞,0),2x<3x”是真命題

查看答案和解析>>

同步練習冊答案