當實數(shù)m為何值時,復(fù)數(shù)z=(m2-8m+15)+(m2+3m-28)i在復(fù)平面內(nèi)的對應(yīng)點:
(1)位于第四象限;
(2)位于x軸負半軸上;
(3)在上半平面(含實軸).
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:計算題,數(shù)系的擴充和復(fù)數(shù)
分析:(1)要使點位于第四象限,須
m2-8m+15>0
m2+3m-28<0
,解出即可;
(2)要使點位于x軸負半軸上,須
m2-8m+15<0
m2+3m-28=0
,解出即可;
(3)要使點位于上半平面(含實軸),須m2+3m-28≥0,解出可得;
解答: 解:(1)要使點位于第四象限,須
m2-8m+15>0
m2+3m-28<0
,即
m<3或m>5
-7<m<4

解得-7<m<3,
∴-7<m<3.
(2)要使點位于x軸負半軸上,須
m2-8m+15<0
m2+3m-28=0
,
3<m<5
m=-7或m=4
,解得m=4,
∴m=4.
(3)要使點位于上半平面(含實軸),須m2+3m-28≥0,
解得m≥4或m≤-7.
點評:該題考查復(fù)數(shù)代數(shù)形式的表示及其幾何意義,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=(x+2)(x-a),若f(x)在x=a處取得極大值,則函數(shù)f(x)的單調(diào)減區(qū)間為( 。
A、[a,-2]
B、[a,+∞)
C、(-∞,-2]
D、[-2,a]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項和為Sn,a1=1,an=
Sn
n
+n-1.
(1)求an
(2)若存在二次函數(shù)f(x)=ax2(a≠0),使數(shù)列{
f(n)
anan+1
}前n項和Tn=
2n2+2n
2n+1
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角α,β滿足sinβ=mcos(α+β)•sinα(m>0,α+β≠
π
2
),若x=tanα,y=tanβ,
(1)求y=f(x)的表達式;
(2)當α∈[
π
4
,
π
2
)時,求(1)中函數(shù)y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+7x+4>0的解集是{x|-
1
2
<x<4}.
(1)求關(guān)于x的不等式 ma•x2+(m+a)x+3+a>0(m≥0)的解集;
(2)若關(guān)于x的不等式 ma•x2+(m+a)x+3+a>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差大于零的等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且a1=b1=2,a2-b2=1,a3+b3=16.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=abn,數(shù)列{cn}前n項的和為Sn,集合A={n∈N*|Sn>6•2n+n2-8n},求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m:y=2x-16,拋物線C:y2=ax(a>0).
(1)當拋物線C的焦點在直線m上時,確定拋物線C的方程;
(2)若△ABC的三個頂點都在(1)所確定的拋物線C上,且點A的縱坐標y=8,△ABC的重心恰在拋物線C的焦點上,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U=R,集合M={x|4a-5<x<4a},N={x|-1<x<3},
(1)若a=
1
2
,求M∩N;
(2)若N⊆∁UM,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)a,b滿足
1
a
+
4
b
=1,則3a+b的最小值為
 

查看答案和解析>>

同步練習冊答案