一個長方體去掉一個小長方體后,所得幾何體的正視圖和側(cè)視圖如圖,
(1)畫出俯視圖;
(2)求表面積.
考點:組合幾何體的面積、體積問題,簡單空間圖形的三視圖
專題:計算題,空間位置關(guān)系與距離
分析:(1)從正視圖和側(cè)視圖上分析,去掉的長方體的位置應(yīng)該在的方位,然后畫出俯視圖.
(2)判斷構(gòu)成幾何體的簡單幾何體的特征,原長方體的表面積去掉小長方體表面積的一半,求解即可.
解答: 解:(1)由正視圖可知去掉的長方體在正視線的方向,從側(cè)視圖可以看出去掉的長方體在原長方體的左側(cè),
俯視圖如圖:

(2)由題意可知幾何體的表面積是原長方體的表面積去掉小長方體表面積的一半.
∴S=S原長方體全-
1
2
S小長方體全
=2(10×8+8×6+10×6)-
1
2
×2(5×4+4×3+5×3)

=329.
點評:本題考查幾何體的三視圖之間的關(guān)系,要注意記憶和理解“長對正、高平齊、寬相等”的含義;考查幾何體的表面積的求法,同時考查轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=x2+3x在點M(2,10)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1037和425的最大公約數(shù)是( 。
A、51B、17C、9D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx+1與圓x2+y2=4相交于A、B兩點,則|AB|的最小值是( 。
A、2
3
B、2
2
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=4,
(1)求過點P(3,4)的圓的切線方程;
(2)若過點Q(2,3)的直線與圓交于A,B兩點,且點Q恰為弦AB的中點,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價格為每千克1.8元,每次購買配料需支付運費236元.每次購買來的配料還需支付保管費用(若n天購買一次,需要支付n天的保管費),其標(biāo)準(zhǔn)如下:7天以內(nèi)(含7天),無論重量多少,均按每天10元支付;超出7天以外的天數(shù),根據(jù)實際剩余配料的重量,以每千克每天0.03元支付.
(1)當(dāng)9天購買一次配料時,分別寫出該廠第8天和第9天剩余配料的重量;
(2)當(dāng)9天購買一次配料時,求該廠用于配料的保管費用p是多少元?
(3)若該廠x天購買一次配料,求該廠在這x天中用于配料的總費用y(元)關(guān)于x的函數(shù)關(guān)系式,并求該廠多少天購買一次配料才能使平均每天支付的費用最少?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1+2a2+22a3+…+2n-1an=
n
2
,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
log
1
2
an
,cn=bnbn+1
,記Sn=c1+c2+…+cn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線上兩點A,B的坐標(biāo)分別為(
9
4
,5),(3,-4
2
)

(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)寫出雙曲線的焦點坐標(biāo),實軸長,虛軸長,離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,其中60名男大學(xué)生中有40人愛好此項運動,女大學(xué)生中有20人愛好此項運動,能不能有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”?
參考數(shù)據(jù) 當(dāng)Χ2≤2.706時,無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)Χ2>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)Χ2>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián).
Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊答案