5.已知在雙曲線$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}$=1上有一點(diǎn)P,F(xiàn)1,F(xiàn)2為兩焦點(diǎn).
(1)若PF1⊥PF2,求△F1PF2的面積及P的坐標(biāo);
(2)若∠F1PF2=60°,求△F1PF2的面積及P的坐標(biāo).

分析 (1)求出兩個(gè)焦點(diǎn)F1、F2 的坐標(biāo),Rt△PF1F2中,由勾股定理及雙曲線的定義得|PF1|•|PF2 |=18,從而求得△PF1F2面積$\frac{1}{2}$|PF1|•|PF2 |的值.
(2)△PF1F2中,由余弦定理及雙曲線的定義得|PF1|•|PF2 |=36,從而求得△PF1F2面積的值.

解答 解:(1)由題意得,a=4,b=3,c=5,∴F1(-5,0 )、F2(5,0),
Rt△PF1F2中,由勾股定理得4c2=|PF1|2+|PF2|2=(|PF1 |-|PF2|)2+2•|PF1|•|PF2 |=4a2+2•|PF1|•|PF2 |,
∴100=4×16+2•|PF1|•|PF2 |,∴|PF1|•|PF2 |=18,
∴△PF1F2面積為$\frac{1}{2}$|PF1|•|PF2 |=9.
設(shè)P(x,y),則$\frac{1}{2}×10×|y|$=9,∴|y|=$\frac{9}{5}$,∴|x|=$\frac{4}{5}\sqrt{34}$
∴P($\frac{4}{5}\sqrt{34}$,$\frac{9}{5}$)或P($\frac{4}{5}\sqrt{34}$,-$\frac{9}{5}$)或P(-$\frac{4}{5}\sqrt{34}$,$\frac{9}{5}$)或P(-$\frac{4}{5}\sqrt{34}$,-$\frac{9}{5}$);
(2)△PF1F2中,由余弦定理得4c2=|PF1|2+|PF2|2-•|PF1|•|PF2 |=(|PF1 |-|PF2|)2+|PF1|•|PF2 |=4a2+|PF1|•|PF2 |,
∴100=4×16+|PF1|•|PF2 |,∴|PF1|•|PF2 |=36,
∴△PF1F2面積為$\frac{1}{2}$|PF1|•|PF2 |$•\frac{\sqrt{3}}{2}$=9$\sqrt{3}$.
設(shè)P(x,y),則$\frac{1}{2}×10×|y|$=9$\sqrt{3}$,∴|y|=$\frac{9\sqrt{3}}{5}$,∴|x|=$\frac{8}{5}\sqrt{13}$.
∴P($\frac{8}{5}\sqrt{13}$,$\frac{9\sqrt{3}}{5}$)或P($\frac{8}{5}\sqrt{13}$,-$\frac{9\sqrt{3}}{5}$)或P(-$\frac{8}{5}\sqrt{13}$,$\frac{9\sqrt{3}}{5}$)或P(-$\frac{8}{5}\sqrt{13}$,-$\frac{9\sqrt{3}}{5}$).

點(diǎn)評(píng) 本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,求出|PF1|•|PF2 |的值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.三棱錐P-ABC中,△ABC為等邊三角形,PA=PB=PC=2,PA⊥PB,三棱錐P-ABC的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.求直線x-y=2被圓x2+y2=4截得的弦長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知正三棱臺(tái)ABC-A1B1C1的上、下底面面積分別是$\frac{9}{4}\sqrt{3}$和9$\sqrt{3}$,高是$\frac{3}{2}$.
(1)求三棱臺(tái)ABC-A1B1C1的斜高;
(2)求三棱臺(tái)ABC-A1B1C1的側(cè)面積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)非負(fù)實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{y≥x-1}\\{2x+y≤5}\end{array}\right.$,(2,1)是目標(biāo)函數(shù)z=ax+3y(a>0)取最大值的最優(yōu)解,則a的取值范圍是( 。
A.(0,6)B.(0,6]C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一個(gè)周期的正弦型曲線如圖所示,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=2cos(x-$\frac{π}{3}$)($\frac{6}{π}$≤x≤$\frac{2π}{3}$)的最小值和最大值分別是1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=4x-2x+1
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)若x∈[-2,2],求函數(shù)y=logaf(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知某扇形的面積是該扇形圓心角弧度數(shù)的8倍,則該扇形的半徑為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案