已知函數(shù)f(x)=
|x+
1
x
|, x≠0
0,         x=0
則關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同實數(shù)解的充要條件是(  )
A、b<-2 且 c>0
B、b>-2 且 c<0
C、b<-2 且 c=0
D、b≥-2 且 c=0
考點:充要條件
專題:數(shù)形結(jié)合
分析:作出f(x)的簡圖,數(shù)形結(jié)合可得.
解答: 解:∵方程f2(x)+af(x)+b=0有且只有5個不同實數(shù)解,
∴對應(yīng)于f(x)等于某個常數(shù)有4個不同實數(shù)解,
由題意作出f(x)的簡圖:
由圖可知,只有當f(x)=0時,它有-個根.
且f(x)=-b時有四個根,
由圖可知-b>2,∴b<-2.
故所求充要條件為:b<-2且c=0,
故選C.
點評:本題考查方程根的個數(shù)問題,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A(3,5),B(4,7),C(-1,y),三點共線,則y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

盒中有20個外形相同的球,其中白球10個,黃球6個,黑球4個,從中任取2球,已知其中有1個黑球,則另一個也是黑球的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
(a-1)x-a  (x<1)
loga(x+1)   (x≥1)
,(a>0且a≠1)是R上的減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0<b<1<a,則下列不等式成立的是(  )
A、ab2<ab<a
B、a<ab<ab2
C、ab2<a<ab
D、a<ab2<ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的焦點為F1、F2,過F1作垂直于x軸的直線交雙曲線于A、B,若sin∠AF2F1=
5
13
,則該雙曲線的離心率e=( 。
A、
3
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)二元一次不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面區(qū)域為M,使函數(shù)y=ax(a>0,a≠1)的圖象過區(qū)域M的a的取值范圍是(  )
A、[1,3]
B、[2,
10
]
C、[2,9]
D、[
10
,9]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算復(fù)數(shù)(
2
2
-
2
2
i)2的結(jié)果為( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
OA
=(1,0),
OB
=(1,1),則向量
OA
,
OB
的夾角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步練習冊答案