某種玫瑰花,進貨商當天以每支1元從鮮花批發(fā)商店購進,以每支2元售出.若當天賣不完,剩余的玫瑰花批發(fā)商店以每支0.5元的價格回收.根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:支)的頻率分布直方圖(如圖所示),將頻率視為概率.
(1)求頻率分布直方圖中a的值;
(2)若進貨量為n(單位支),當n≥X時,求利潤Y的表達式;
(3)若當天進貨量n=400,求利潤Y的分布列和數(shù)學期望E(Y)(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表).
考點:離散型隨機變量的期望與方差,頻率分布直方圖,離散型隨機變量及其分布列
專題:概率與統(tǒng)計
分析:(1)由頻率分布直方圖能求出a的值.
(2)由n≥X,知Y=(2-1)X-(n-X)0.5,由此能求出利潤Y的表達式.
(3)若當天進貨量n=400,依題意銷售量X的可能值為200,300,400,500,對應(yīng)的利潤Y分別為100,250,400.由此能求出利潤Y的分布列和數(shù)學期望E(Y).
解答: 解:(1)由頻率分布直方圖,
得100a+0.002×100+0.003×100+0.003 5×100=1,
解得a=0.0015.(3分)
(2)∵n≥X,
∴Y=(2-1)X-(n-X)0.5=1.5X-0.5n.
∴利潤Y的表達式為Y=1.5X-0.5n.(6分)
(3)若當天進貨量n=400,依題意銷售量X的可能值為200,300,400,500,
對應(yīng)的利潤Y分別為100,250,400.
∴利潤Y的分布列為:
Y 100 250 400
P 0.20 0.35 0.45
∴E(Y)=100×0.20+250×0.35+400×0.45=287.5(元).(12分)
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意頻率直方圖的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sin(2x-
π
6
)圖象向左平移
π
4
個單位,所得函數(shù)圖象的一條對稱軸的方程是( 。
A、x=
π
12
B、x=
π
6
C、x=
π
3
D、x=-
π
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+alnx(x>0)
(1)a=-2時,求函數(shù)的單調(diào)區(qū)間;
(2)a=-8時,求函數(shù)在[1,e]上的最小值及最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1的離心率與雙曲線y2-
x2
2
=1的離心率互為倒數(shù),直線l:y=x+2與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為
F
 
1
,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)設(shè)第(2)問中的C2與x軸交于點Q,不同的兩點R,S在C2上,且滿足
QR
RS
=0
,求|
QS
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列算式:13=1.23=3+5,33=7+9+11,43=13+15+17+19,…若某數(shù)m3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-
3
2
x2+8.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+48(a-2)x,a∈R.若f′(2)=-36
(Ⅰ)求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足遞推關(guān)系式an+1=2an+2n-1(n∈N*),且{
an
2n
}為等差數(shù)列,則λ的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)z=x+y,若x,y滿足
x+y-2≥0
x-2y+4≥0
2x-y-a≤0
,若z的最大值為8,則a=
 

查看答案和解析>>

同步練習冊答案