已知數(shù)列{an}滿足遞推關(guān)系式an+1=2an+2n-1(n∈N*),且{
an
2n
}為等差數(shù)列,則λ的值是
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義即可得到結(jié)論.
解答: 解:若{
an
2n
}為等差數(shù)列,
an+1
2n+1
-
an
2n
=
2an+2n-1+λ
2n+1
-
an
2n
=
an
2n
+
1
2
+
λ-1
2n+1
-
λ
2n
-
an
2n
=
1
2
+
λ-1
2n+1
-
λ
2n
為常數(shù),
λ-1
2n+1
-
λ
2n
=0,則λ-1-2λ=0,
解得λ=-1,
故答案為:-1
點(diǎn)評(píng):本題主要考查等差數(shù)列的應(yīng)用,利用數(shù)列的遞推關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=25
①過(guò)點(diǎn)P(1,-2
6
)作圓O的切線,求切線方程;
②若點(diǎn)M(x,y)是圓O上任意一點(diǎn),求
3
x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種玫瑰花,進(jìn)貨商當(dāng)天以每支1元從鮮花批發(fā)商店購(gòu)進(jìn),以每支2元售出.若當(dāng)天賣(mài)不完,剩余的玫瑰花批發(fā)商店以每支0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:支)的頻率分布直方圖(如圖所示),將頻率視為概率.
(1)求頻率分布直方圖中a的值;
(2)若進(jìn)貨量為n(單位支),當(dāng)n≥X時(shí),求利潤(rùn)Y的表達(dá)式;
(3)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x在x=1處取得極值-2.
(1)求函數(shù)f(x)的解析式;
(2)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某一射手射擊所得的環(huán)數(shù)ξ的分布列如下:
ξ 4 5 6 7 8 9 10
P 0.02 0.04 0.06 0.09 0.28 0.29 0.22
求此射手“射擊一次命中環(huán)數(shù)≥7”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無(wú)名指,5小指,6無(wú)名指,…,一直數(shù)到2014時(shí),對(duì)應(yīng)的指頭是
 
(填指頭的名稱).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)有以下兩個(gè)程序:
程序
x=
1
3

i=1
while i<3
x=
1
(1+x)

i=i+1
wend
print x
end
程序的輸出結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是集合{2t+2s|0≤s<t且s,t∈N}中所有的數(shù)從小到大排成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…,將數(shù)列{an}各項(xiàng)按從小到大寫(xiě)成如下三角形數(shù)表,用bij表示數(shù)表中第i行第j個(gè)數(shù)(1≤j≤i)則
(Ⅰ)a27=
 

(Ⅱ)
n
i=1
i
i=1
bij
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程x2+(1+i)x-6+3i=0有兩根x1和x2,其中x1是實(shí)數(shù)根,則
x1
x2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案