17.設(shè)命題p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-4|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;命題Q:函數(shù)f(x)=3x2+2mx+m+$\frac{4}{3}$有兩個不同的零點.求使“P且Q”為真命題的實數(shù)m的取值范圍.

分析 分別求出p,q成立的m的范圍,取交集即可.

解答 解:由題設(shè)x1+x2=a,x1x2=-2,
∴$|{{x_1}-{x_2}}|=\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}=\sqrt{{a^2}+8}$.
當(dāng)a∈[1,2]時,$\sqrt{{a^2}+8}$的最小值為3.
要使|m-4|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,
只需||m-4|≤3,即1≤m≤7.--------------(3分)
由已知,得$f(x)=3{x^2}+2mx+m+\frac{4}{3}$的判別式:
$△=4{m^2}-12({m+\frac{4}{3}})=4{m^2}-12m-16>0$,
得m<-1或m>4.----------------(6分)
綜上,要使“P∧Q”為真命題,
只需P真Q真,即$\left\{\begin{array}{l}1≤m≤7\\ m<-1或m>4\end{array}\right.$,-----------------(8分)
解得實數(shù)m的取值范圍是:(4,7]--------------------(10分)

點評 本題考查了復(fù)合命題的判斷,考查函數(shù)恒成立問題以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.命題“若x>0,則${2^{3x-{x^2}}}<4$”的逆否命題為若${2^{3x-{x^2}}}≥4$,則x≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)x1,x2是方程x2-2mx+4m2-4m+1=0的兩個不等實根,
(Ⅰ)將x12+x22表示為m的函數(shù)g(m),并求其定義域;
(Ⅱ)設(shè)f(m)=$\frac{{m}^{2}}{g(m)-1}$,求f(m)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf(x)<0的解集為(-1,0)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)命題p:?x>1,x2-x+1>0,則?p為( 。
A.?x≤1,x2-x+1≤0B.?x>1,x2-x+1≤0C.?x>1,x2-x+1≤0D.?x≤1,x2-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$y={log_{\frac{1}{4}}}({{x^2}-4x-5})$的單調(diào)增區(qū)間是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=lg(-x2-2x+8)的單調(diào)遞減區(qū)間是(  )
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y+2≥0}\\{2x-y-2≤0}\end{array}\right.$所確定的平面區(qū)域記為D,
(1)作出平面區(qū)域D.
(2)求(x-2)2+(y+3)2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若關(guān)于x的不等式|x-8|-|x-6|≤a的解集非空,則實數(shù)a的取值范圍是( 。
A.(-2,+∞)B.[-2,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案