10.若f(x)=$\root{3}{2x+4}$,則f(2)=( 。
A.1B.2C.4D.8

分析 直接利用函數(shù)的解析式求解函數(shù)值即可.

解答 解:f(x)=$\root{3}{2x+4}$,則f(2)=$\root{3}{2×2+4}$=2.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為減函數(shù)的是( 。
A.y=x2B.y=x3C.y=x-2D.y=x-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知焦點在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(b>0),F(xiàn)1,F(xiàn)2是它的兩個焦點,若橢圓上的點到焦點距離的最大值與最小值的差為2.
(1)求橢圓的標準方程;
(2)經(jīng)過右焦點F2的直線l與橢圓相交于A、B兩點,且$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知A={x|x2≤1},B={x|x2-2x>0},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知拋物線y2=8x的焦點為F,過F作直線l交拋物線與A、B兩點,設|FA|=m,|FB|=n,則m.n的取值范圍( 。
A.(0,4]B.(0,14]C.[4,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)在(0,+∞)上是減函數(shù)的是(  )
A.y=x2B.y=-x2C.y=-2x2+3x-1D.y=x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.歐陽修《煤炭翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕.
可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為1.5cm圓,中間有邊長為0.5cm的正方形孔,若你隨機向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率為( 。
A.$\frac{4}{9π}$B.$\frac{9}{4π}$C.$\frac{4π}{9}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若向量$\overrightarrow{a,}\overrightarrow$滿足$|\overrightarrow{a}|$=$\sqrt{3}$,$|\overrightarrow|$=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為150°,則|2$\overrightarrow{a}$-$\overrightarrow$|=$2\sqrt{13}$.

查看答案和解析>>

同步練習冊答案