已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,l?α,l?β,則( 。
A、α與β相交,且交線平行于l
B、α與β相交,且交線垂直于l
C、α∥β,且l∥α
D、α⊥β,且l⊥β
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離
分析:由題目給出的已知條件,結(jié)合線面平行,線面垂直的判定與性質(zhì),可以直接得到正確的結(jié)論.
解答: 解:由m⊥平面α,直線l滿足l⊥m,且l?α,所以l∥α,
又n⊥平面β,l⊥n,l?β,所以l∥β.
由直線m,n為異面直線,且m⊥平面α,n⊥平面β,則α與β相交,否則,若α∥β則推出m∥n,
與m,n異面矛盾.
故α與β相交,且交線平行于l.
故選:A.
點(diǎn)評:本題考查了平面與平面之間的位置關(guān)系,考查了平面的基本性質(zhì)及推論,考查了線面平行、線面垂直的判定與性質(zhì),考查了學(xué)生的空間想象和思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值為2014,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1)a>b,c>b,則a>c;(2)若a>b,則ac2>bc2;(3)若a2>b2,則a>b;(4)若a>|b|,則a2>b2.以上命題中真命題的個(gè)數(shù)是  (  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面α、β,直線a、b,a?α,b?α,則“a∥β,b∥β”是“α∥β”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)結(jié)論:
(1)兩條直線都和同一個(gè)平面平行,則這兩條直線平行;
(2)兩條直線沒有公共點(diǎn),則這兩條直線平行;
(3)兩條直線都和第三條直線垂直,則這兩條直線平行;
其中正確的命題個(gè)數(shù)為( 。
A、0
B、1
C、π
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x≥1
y≥1
x+y≤5
時(shí),z=
x
a
+
y
b
 
(a≥b>0)的最大值為1,則a+b的最小值為( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出S的值為( 。
A、3B、-6C、10D、-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足3Sn=Sn-1+2(n≥2,n∈N*),b1=
2
3

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn,Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“?x,y∈R,若x≠2或y≠3,則x+y≠5”是
 
.(填“真命題”或“假命題”)

查看答案和解析>>

同步練習(xí)冊答案