相關(guān)習(xí)題
 0  209584  209592  209598  209602  209608  209610  209614  209620  209622  209628  209634  209638  209640  209644  209650  209652  209658  209662  209664  209668  209670  209674  209676  209678  209679  209680  209682  209683  209684  209686  209688  209692  209694  209698  209700  209704  209710  209712  209718  209722  209724  209728  209734  209740  209742  209748  209752  209754  209760  209764  209770  209778  266669 

科目: 來源: 題型:

已知二次函數(shù)g(x)=x2+bx+c且在x=-1處取得最小值為m-1(m≠0).
(Ⅰ)求g(x);
(Ⅱ)設(shè)函數(shù)f(x)=
g(x)
x
,若曲線y=f(x)上的點到點Q(0,2)的距離的最小值為
2
,求m的值.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,又a1=1,a2=2,且滿足Sn+1=kSn+1,
(1)求k的值及an的通項公式;
(2)若Tn=
an
(an+1)(an+1+1)
,求證:T1+T2+…+Tn
1
2

查看答案和解析>>

科目: 來源: 題型:

解下列不等式:
(1)|2-3x|≤
1
2

(2)|x|+|x+1|<2.

查看答案和解析>>

科目: 來源: 題型:

為了研究玉米品種對產(chǎn)量的影響,某農(nóng)科院對一塊試驗田種植的一批玉米共10000株的生長情況進行研究,現(xiàn)采用分層抽樣方法抽取50株為樣本,統(tǒng)計結(jié)果如表:
高莖矮莖合計
圓粒111930
皺粒13720
合計242650
(1)現(xiàn)采用分層抽樣方法,從這個樣本中取出10株玉米,再從這10株玉米中隨機選出3株,求選到的3株之中既有圓粒玉米又有皺粒玉米的概率;
(2)根據(jù)對玉米生長情況作出的統(tǒng)計,是否能在犯錯誤的概率不超過0.050的前提下認為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考):
P(K2≥k)0.150.100.0500.0250.0100.001
k2.0722.7063.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目: 來源: 題型:

用作差法比較2x2+5x+3與x2+4x+2的大小.

查看答案和解析>>

科目: 來源: 題型:

在二項式(2x-3y)9展開式中,求:
(1)二項式系數(shù)之和;
(2)各項系數(shù)之和.

查看答案和解析>>

科目: 來源: 題型:

某市調(diào)研考試后,某校對甲乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為
3
11

優(yōu)秀非優(yōu)秀合計
甲班10
乙班30
合計110
(1)請完成上面的列聯(lián)表
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關(guān)系”
參考公式與臨界值表:K2=
n(ad-bc)2
(a+b)(c+d)(c+a)(b+d)

P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目: 來源: 題型:

過點P(7,1)作圓x2+y2=25的切線,求切線的方程.

查看答案和解析>>

科目: 來源: 題型:

在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C1和直線C2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=
4b
bcosθ+4sinθ
(b∈R).
(1)求圓C1和直線C2的直角坐標(biāo)方程,并求直線C2被圓C1所截的弦長;
(2)過原點O作直線C2的垂線,垂足為點A,求線段OA的中點M的軌跡的參數(shù)方程.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=|2x+1|-|x-2|.
(1)解不等式f(x)>0;
(2)已知關(guān)于x的不等式a+3<f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案