相關習題
 0  210846  210854  210860  210864  210870  210872  210876  210882  210884  210890  210896  210900  210902  210906  210912  210914  210920  210924  210926  210930  210932  210936  210938  210940  210941  210942  210944  210945  210946  210948  210950  210954  210956  210960  210962  210966  210972  210974  210980  210984  210986  210990  210996  211002  211004  211010  211014  211016  211022  211026  211032  211040  266669 

科目: 來源: 題型:

甲乙兩名射手在一次射擊中的得分是兩個獨立的隨機變量X,Y,分布列為
X 1 2 3
P a 0.1 0.6
Y 1 2 3
P 0.3 b 0.3
(1)求a,b的值;
(2)計算X,Y的均值E(X),E(Y)與方差D(X),D(Y);并分析甲,乙的技術狀況.
(參考數(shù)據(jù):0.3×(-1.3)2+0.1×(-0.3)2)+0.6×(0.7)2=0.81)

查看答案和解析>>

科目: 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a3=3且S5-2a1=17.等比數(shù)列{bn}中,b1=a2,b2S3=6.
(Ⅰ)求an與bn;
(Ⅱ)設cn=an+1bn,設Tn=c1+c2+c3+…+cn,求Tn

查看答案和解析>>

科目: 來源: 題型:

已知左焦點為F1(-2
2
,0)的橢圓過點(
3
2
2
,
2
2
),過上頂點A作兩條互相垂直的動弦AP,AQ交橢圓于P,Q兩點.
(1)求橢圓的標準方程;
(2)若動弦AP所在直線的斜率為1,求直角三角形APQ的面積;
(3)試問動直線PQ是否過定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右準線為直線l,動直線y=kx+m(k<0,m>0)交橢圓于A,B兩點,線段AB的中點為M,射線OM分別交橢圓及直線l于P,Q兩點,如圖.若A,B兩點分別是橢圓E的右頂點,上頂點時,點Q的縱坐標為
1
e
(其中e為橢圓的離心率),且OQ=
5
OM.
(1)求橢圓E的標準方程;
(2)如果OP是OM,OQ的等比中項,那么
m
k
是否為常數(shù)?若是,求出該常數(shù);若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在直角坐標xoy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2cosθ,如圖,曲線C與x軸交于O,B兩點,P是曲線C在x軸上方圖象上任意一點,連結OP并延長至M,使PM=PB,當P變化時,求動點M的軌跡的長度.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E經(jīng)過點A(2,3),對稱軸為坐標軸,焦點F1,F(xiàn)2在X軸上,離心率e=
1
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)設橢圓E的右頂點為B,直線l過左焦點F1且垂直于X軸,交橢圓于M、N兩點,求△BMN的面積.

查看答案和解析>>

科目: 來源: 題型:

四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點.
(Ⅰ)證明:MN∥平面PAD.
(Ⅱ)若CM=PM,MN⊥AB,證明:平面PAD⊥平面PDC.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}前n項和為Sn,且Sn=n2+
1
2
n
(1)求數(shù)列{an}的通項公式;
(2)若bn=2n,設cn=
an+
1
2
bn
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,且Sn-1+
1
Sn
+2=0(n≥2).
(1)寫出S1,S2,S3,S4.(不用寫求解過程)
(2)猜想Sn的表達式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目: 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(1,
3
2
),F(xiàn)1、F2分別為橢圓C的左、右兩個焦點,且離心率e=
1
2

(1)求橢圓C的方程;
(2)已知O為坐標原點,直線l過橢圓的右焦點F2與橢圓C交于M、N兩點.若OM、ON 的斜率k1,k2滿足k1+k2=-3,求直線l的方程.

查看答案和解析>>

同步練習冊答案