相關習題
 0  213329  213337  213343  213347  213353  213355  213359  213365  213367  213373  213379  213383  213385  213389  213395  213397  213403  213407  213409  213413  213415  213419  213421  213423  213424  213425  213427  213428  213429  213431  213433  213437  213439  213443  213445  213449  213455  213457  213463  213467  213469  213473  213479  213485  213487  213493  213497  213499  213505  213509  213515  213523  266669 

科目: 來源: 題型:

有一個圓錐的側面展開圖是一個半徑為5,圓心角為216°的扇形,在這個圓錐中內(nèi)接一個高為2的圓柱.
(1)求圓錐的體積;
(2)求圓錐與圓柱的體積之比.

查看答案和解析>>

科目: 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,點D是BC上一點.
(1)若點D是BC的中點,求證:A1C∥平面AB1D;
(2)若平面AB1D⊥平面BCC1B1,求證:AD⊥BC.

查看答案和解析>>

科目: 來源: 題型:

矩形ABCD的中心在坐標原點,邊AB與x軸平行,AB=8,BC=6.E,F(xiàn),G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,R′,S′,T′是線段CF的四等分點.設直線ER與GR′,ES與GS′,ET與GT′的交點依次為L,M,N.
(1)求以HF為長軸,以EG為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點L,M,N都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段OF的n(n∈N+,n≥2)等分點從左向右依次為Ri(i=1,2,…,n-1),線段CF的n等分點從上向下依次為Ti(i=1,2,…,n-1),那么直線ERi(i=1,2,…,n-1)與哪條直線的交點一定在橢圓Q上?(寫出結果即可,此問不要求證明)

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(sinα,-2)
b
=(1,cosα)
,其中α∈(0,
π
2
)

(1)問向量
a
,
b
能平行嗎?請說明理由;
(2)若
a
b
,求sinα和cosα的值;
(3)在(2)的條件下,若cosβ=
10
10
,β∈(0,
π
2
)
,求α+β的值.

查看答案和解析>>

科目: 來源: 題型:

盒子中裝著標有數(shù)字1,2,3,4,5的卡片各1張,從盒子中任取3張卡片,每張卡片被取出的可能性相等,用ξ表示取出的3張卡片上的最大數(shù)字,求:
(1)取出的3張卡片上最大數(shù)字是5的概率;
(2)隨機變量ξ的概率分布和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,若X>0就去打球;若X=0就去唱歌;若X<0就去下棋.
(Ⅰ)分別求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)寫出數(shù)量積X的所有可能取值,并求X分布列與數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

在2010年的人口普查中,某市人中普查辦公室為召開普查工作意見反饋會,用分層抽樣的方法,從某住宅小區(qū)中抽取A、B、C、D四個年齡段的居民共50人.如圖是該小區(qū)這四個年齡段的人數(shù)條形圖.
(1)應從A、B、C、D四個年齡段中各抽取多少人?
(2)從這50人中再隨機抽取2人,求這2人恰好是不同年齡段的概率;
(3)從這50人屬于A、C兩個年齡段的居民中再隨機抽取3人,用ξ表示抽取的是A年齡段的人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

雙曲線
x2
9
-
y2
16
=1
的兩個焦點為F1,F(xiàn)2,點P在雙曲線上.若PF1⊥PF2,求點P到x軸的距離.

查看答案和解析>>

科目: 來源: 題型:

已知圓錐的母線長為10cm,底面半徑為5cm,
(1)求它的高;
(2)若該圓錐內(nèi)有一球,球與圓錐的底面及圓錐的所有母線都相切,求球的體積.

查看答案和解析>>

科目: 來源: 題型:

袋中有4個紅球,3個黑球,從袋中隨機取球,設取到一個紅球得2分,取到一個黑球得1分,從袋中任取4個球,
(1)求得分X的分布列和數(shù)學期望;
(2)求得分大于6分的概率.

查看答案和解析>>

同步練習冊答案