相關(guān)習(xí)題
 0  252138  252146  252152  252156  252162  252164  252168  252174  252176  252182  252188  252192  252194  252198  252204  252206  252212  252216  252218  252222  252224  252228  252230  252232  252233  252234  252236  252237  252238  252240  252242  252246  252248  252252  252254  252258  252264  252266  252272  252276  252278  252282  252288  252294  252296  252302  252306  252308  252314  252318  252324  252332  266669 

科目: 來源: 題型:選擇題

14.在-360°~0°范圍內(nèi)與角1250°終邊相同的角是( 。
A.-210°B.-150°C.-190°D.-170°

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點.
(1)求AD1與DB所成角的大;
(2)求AE與平面ABCD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

12.定義在R上的函數(shù)f(x)對任意的實數(shù)a、b、c,都有:f(a+b)+f(b+c)+f(a+c)≥3f(a+2b+c),則f(2014)-f(2013)的值為0.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過焦點垂直于長軸的弦長為1,且焦點與短軸兩端點構(gòu)成等邊三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點P在橢圓C上,求P到直線x-2y+3$\sqrt{2}$=0的距離的最大值和最小值,并求出取最大值或最小值時P點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:選擇題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸被圓x2+y2=b2與x軸的兩個交點三等分,則橢圓的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是A B.PC的中點.
(1)求證:平面MND⊥平面PCD; 
(2)求點P到平面MND的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圓O:x2+y2=b2,過橢圓上一點P引圓O的兩條切線,切點分別為A,B,若橢圓上存在點P,使$\overrightarrow{PA}•\overrightarrow{PB}=0$,則橢圓離心率e的取值范圍為( 。
A.$[\frac{1}{2},1)$B.$[\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P,若|AP|=2|PB|,則橢圓的離心率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個焦點為F1,若橢圓上存在一個點P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點,則橢圓的離心率為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知圓C:x2+y2-4x-14y+45=0,及點Q(-2,3).
(1)P(a,a+1)在圓上,求直線PQ的斜率;
(2)若M為圓C上任一點,求|MQ|的最大值和最小值;
(3)求$\frac{y-3}{x+2}$的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案