相關習題
 0  252289  252297  252303  252307  252313  252315  252319  252325  252327  252333  252339  252343  252345  252349  252355  252357  252363  252367  252369  252373  252375  252379  252381  252383  252384  252385  252387  252388  252389  252391  252393  252397  252399  252403  252405  252409  252415  252417  252423  252427  252429  252433  252439  252445  252447  252453  252457  252459  252465  252469  252475  252483  266669 

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{a-x}{x}$,其中a為常數(shù),且a>0.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.如圖,F(xiàn)1,F(xiàn)2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,作過F1作兩條相互垂直的直線l1,l2,其中直線l1交雙曲線右支于點M,直線l2交雙曲線左支于點N,以下說法一定正確的是④
①若|F2M|<|F2N|,則∠MF2N為銳角
②若|F2M|<|F2N|,則∠MF2N為鈍角
③若|F2M|<|F1N|,則∠MF2N為銳角
④若|F2M|<|F1N|,則∠MF2N為鈍角.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域為R且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),則方程f(x)=$\frac{2x+1}{x}$在區(qū)間[-3,3]的所有實根之和為( 。
A.-8B.-2C.0D.1

查看答案和解析>>

科目: 來源: 題型:解答題

8.解下列關于x的不等式:
(1)$(\frac{1}{3})^{{x}^{2}-2x}>1$;
(2)log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知集合A={x|3-a<x<2a+7},B={x|x≤3或x≥6}
(1)當a=3時,求A∩B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

6.若關于x的函數(shù)y=loga(ax+1)(a>0且a≠1)在[-3,-2]上單調遞減,則實數(shù)a的取值范圍為0<a<$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.log7[log5(log2x)]=0,則${x}^{-\frac{2}{5}}$的值為$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.下列各式(各式均有意義)不正確的個數(shù)為( 。
①loga(MN)=logaM+logaN   
②loga(M-N)=$\frac{lo{g}_{a}M}{lo{g}_{a}N}$
③${a}^{{-}^{\frac{n}{m}}}=\frac{1}{\root{m}{{a}^{n}}}$ ④(amn=amn    ⑤loganb=-nlogab.
A.2B.3C.4D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

3.函數(shù)y=$(\frac{1}{2})^{{x}^{2}-1}$的單調遞增區(qū)間為( 。
A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目: 來源: 題型:選擇題

2.下列函數(shù)中既不是奇函數(shù)也不是偶函數(shù)的是( 。
A.y=$\sqrt{{x}^{2}-2}$B.y=ln(x+$\sqrt{{x}^{2}+1}$)C.y=x-exD.y=$\frac{{e}^{2x}-1}{{e}^{x}}$

查看答案和解析>>

同步練習冊答案