相關習題
 0  252337  252345  252351  252355  252361  252363  252367  252373  252375  252381  252387  252391  252393  252397  252403  252405  252411  252415  252417  252421  252423  252427  252429  252431  252432  252433  252435  252436  252437  252439  252441  252445  252447  252451  252453  252457  252463  252465  252471  252475  252477  252481  252487  252493  252495  252501  252505  252507  252513  252517  252523  252531  266669 

科目: 來源: 題型:解答題

13.已知△ABC的面積S滿足1$≤S≤\sqrt{3}$,且$\overrightarrow{AC}•\overrightarrow{CB}=-2$,∠ACB=θ.
(1)求函數f(θ)=sin($θ-\frac{π}{4}$)+4$\sqrt{2}$sinθcosθ-cos($θ+\frac{π}{4}$)-2的最大值;
(2)若$\overrightarrow{m}$=(sin2A,cos2A),$\overrightarrow{n}$=(cos2B,sin2B),求|2$\overrightarrow{m}$-3$\overrightarrow{n}$|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.如圖,在正方體ABCD-A1B1C1D1中,M為棱BB1的中點,則下列結論錯誤的是( 。
A.B1D∥平面MAC
B.B1D⊥平面A1BC1
C.二面角M-AC-B等于45°
D.異面直線BC1與AC所形成的角等于60°

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設a,b,c∈R,則下列正確的是( 。
A.若ac>bc,則a>bB.若a2>b2,則a>bC.若$\sqrt{a}$<$\sqrt$,則a<bD.若$\frac{1}{a}$>$\frac{1}$,則a<b

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),x∈R.
(1)在所給坐標系中用五點法作出它在區(qū)間[$\frac{π}{8}$,$\frac{9π}{8}$]上的圖象.
(2)求f(x)的單調區(qū)間.
(3)說明f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的圖象可由y=sinx的圖象經過怎樣的變換而得到.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知cos(75°+α)=$\frac{1}{3}$,其中α為第三象限角,則cos(105°-α)+sin(α-105°)+sin(α-15°)=$\frac{2\sqrt{2}-2}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知函數f(x)=2cos(2x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$),則f(x)的值域為(-$\sqrt{2}$,2].

查看答案和解析>>

科目: 來源: 題型:填空題

7.某公司生產三種型號的轎車,產量分別是1600輛、6000輛和2000輛,為檢驗公司的產品質量,現從這三種型號的轎車種抽取48輛進行檢驗,這三種型號的轎車依次應抽取8,30,10.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若0<α<2π,cosα>$\frac{\sqrt{3}}{2}$,sinα<$\frac{1}{2}$,則角α的取值范圍是( 。
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(0,$\frac{π}{6}$)C.(0,$\frac{π}{6}$)∪($\frac{5π}{3}$,2π)D.(0,$\frac{π}{6}$)∪($\frac{11π}{6}$,2π)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.41(6)對應的二進制數是( 。
A.11001(2)B.10011(2)C.10101(2)D.10001(2)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知角α的終邊在射線y=-3x(x≥0)上,則sinαcosα等于( 。
A.-$\frac{3}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{3}{10}$D.-$\frac{\sqrt{10}}{10}$

查看答案和解析>>

同步練習冊答案