相關(guān)習(xí)題
 0  252509  252517  252523  252527  252533  252535  252539  252545  252547  252553  252559  252563  252565  252569  252575  252577  252583  252587  252589  252593  252595  252599  252601  252603  252604  252605  252607  252608  252609  252611  252613  252617  252619  252623  252625  252629  252635  252637  252643  252647  252649  252653  252659  252665  252667  252673  252677  252679  252685  252689  252695  252703  266669 

科目: 來源: 題型:解答題

10.求下列函數(shù)的單調(diào)區(qū)間:
(1)y=cos(2x+$\frac{π}{6}$);
(2)y=3sin($\frac{π}{3}$-$\frac{x}{2}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

9.對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,已知函數(shù)f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$(0≤x<3),對(duì)其定義域內(nèi)的任意x,恒有fK(x)=f(x),則( 。
A.K上最小值為$\frac{1}{27}$B.K的最小值為3C.K的最大值為$\frac{1}{27}$D.K的最大值為3

查看答案和解析>>

科目: 來源: 題型:選擇題

8.若$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2,$\overrightarrow{PB}$=4$\overrightarrow{AP}$,$\overrightarrow{OP}$=me1+ne2,則m-n等于( 。
A.$\frac{1}{4}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

7.函數(shù)f(x)=($\frac{1}{3}$)${\;}^{\sqrt{-{x}^{2}+2x+3}}$的單調(diào)遞減區(qū)間是[-1,1].

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,四棱錐S一ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),且AD=2,SA=AB=1.
求:(1)SC與平面SAD所成角的正切值;
    (2)SP與平面SCD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知點(diǎn)F的坐標(biāo)為(0,$\frac{3}{2}$),動(dòng)圓P經(jīng)過點(diǎn)F且和直線y=-$\frac{3}{2}$相切.
(1)求動(dòng)圓P的圓心軌跡W的方程;
(2)過點(diǎn)F的直線1,交軌跡W于A、B兩點(diǎn),若|AB|=12,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

4.設(shè)f(x)=ax5+bx3+x2-1(a,b為常數(shù)),若f(-5)=2,則f(5)=46.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=2sinA•5sinC.
(I)若a=b,求cosB;
(Ⅱ)設(shè)B=90°,且a=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知等差數(shù)列{an}的公差d不為零,其前n項(xiàng)和為Sn,S5=70,且a2,a7,a22成等比數(shù)列,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=$\frac{1}{{S}_{n}}$-$\frac{1}{{2}^{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<0.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖所示,AC為球O的直徑,BC是截面圓O1的直徑,點(diǎn)D在圓O1上,根據(jù)球的截面性質(zhì):球心和截面圓心的連線垂直于截面,求證:
(1)AB⊥平面BCD;
(2)平面ADC⊥平面ABD.

查看答案和解析>>

同步練習(xí)冊(cè)答案