相關(guān)習(xí)題
 0  256380  256388  256394  256398  256404  256406  256410  256416  256418  256424  256430  256434  256436  256440  256446  256448  256454  256458  256460  256464  256466  256470  256472  256474  256475  256476  256478  256479  256480  256482  256484  256488  256490  256494  256496  256500  256506  256508  256514  256518  256520  256524  256530  256536  256538  256544  256548  256550  256556  256560  256566  256574  266669 

科目: 來(lái)源: 題型:

【題目】某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為類工人).現(xiàn)用分層抽樣方法(按類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).

(1)類工人和類工人中個(gè)抽查多少工人

(2)從類工人中的抽查結(jié)果和從類工人中的抽查結(jié)果分別如下表1和表2.

表1:

表2:

先確定,,再完成下列頻率分布直方圖就生產(chǎn)能力而言,類工人中個(gè)體間的差異程度與類工人中個(gè)體間的差異程度哪個(gè)更小?(不用計(jì)算,可通過(guò)觀察直方圖直接回答結(jié)論)

分別估計(jì)類工人和類工人生產(chǎn)能力的平均數(shù)并估計(jì)該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中

的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】未知數(shù)的個(gè)數(shù)多余方程個(gè)數(shù)的方程(組)叫做不定方程,最早提出不定方程的是我國(guó)的《九章算術(shù)》.實(shí)際生活中有很多不定方程的例子,例如百雞問(wèn)題:公元五世紀(jì)末,我國(guó)古代數(shù)學(xué)家張丘建在《算經(jīng)》中提出了百雞問(wèn)題雞母一,值錢三;雞翁一,值錢二;雞雛二,值錢一.百錢買百雞,問(wèn)雞翁、母、雛各幾何?

算法設(shè)計(jì):

(1)設(shè)母雞、公雞、小雞數(shù)分別為、、,則應(yīng)滿足如下條件

(2)先分析一下三個(gè)變量的可能值.的最小值可能為零,若全部錢用來(lái)買母雞最多只能買33只,

的值為中的整數(shù)的最小值為零,最大值為50.的最小值為零最大值為100.

(3)對(duì)、、三個(gè)未知數(shù)來(lái)說(shuō),取值范圍最少為提高程序的效率,先考慮對(duì)的值進(jìn)行一一列舉

(4)在固定一個(gè)的值的前提下,再對(duì)值進(jìn)行一一列舉

(5)對(duì)于每個(gè),,怎樣去尋找滿足百年買百雞條件的.由于值已設(shè)定,便可由下式得到:

(6)這時(shí)的是一組可能解它只滿足百雞條件,還未滿足百錢.是否真實(shí)解,還要看它們是否滿足,滿足即為所求解

根據(jù)上述算法思想,畫出流程圖并用偽代碼表示.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)時(shí),曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時(shí)學(xué)習(xí)效果最佳.

(1)試求的函數(shù)關(guān)系式;

(2)教師在什么時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸, 建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中, 直線經(jīng)過(guò)點(diǎn),傾斜角

1寫出曲線直角坐標(biāo)方程和直線的參數(shù)方程;

2設(shè)與曲線相交于兩點(diǎn), 的值

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)對(duì)任意,若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖, 四棱錐中, 平面平面,為線段上一點(diǎn),的中點(diǎn)

1證明: 平面;

2求二面角的正弦值

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按/次收費(fèi), 并注冊(cè)成為會(huì)員, 對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

消費(fèi)次第






收費(fèi)比例






該公司從注冊(cè)的會(huì)員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì), 得到統(tǒng)計(jì)數(shù)據(jù)如下:

消費(fèi)次第






頻數(shù)






假設(shè)汽車美容一次, 公司成本為, 根據(jù)所給數(shù)據(jù), 解答下列問(wèn)題:

1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;

2)某會(huì)員僅消費(fèi)兩次, 求這兩次消費(fèi)中, 公司獲得的平均利潤(rùn);

3)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率, 設(shè)該公司為一位會(huì)員服務(wù)的平均利潤(rùn)為, 的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線的焦點(diǎn), 若點(diǎn),

1)求的值;

2)若直線經(jīng)過(guò)點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某廠家計(jì)劃在2012年舉行商品促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該商品的年銷售量萬(wàn)件與年促銷費(fèi)用萬(wàn)元滿足:,其中為常數(shù),若不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只有1萬(wàn)件,已知2012年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家的產(chǎn)量等于銷售量,而銷售收入為生產(chǎn)成本的15生產(chǎn)成本由固定投入和再投入兩部分資金組成

12012年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷費(fèi)用萬(wàn)元的函數(shù);

2該廠2012年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).

(1)求證:EF∥平面PAD;

(2)求三棱錐B-EFC的體積;

(3)求二面角P-EC-D的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案