相關習題
 0  256419  256427  256433  256437  256443  256445  256449  256455  256457  256463  256469  256473  256475  256479  256485  256487  256493  256497  256499  256503  256505  256509  256511  256513  256514  256515  256517  256518  256519  256521  256523  256527  256529  256533  256535  256539  256545  256547  256553  256557  256559  256563  256569  256575  256577  256583  256587  256589  256595  256599  256605  256613  266669 

科目: 來源: 題型:

【題目】已知函數(shù)為奇函數(shù)

1)比較的大小,并說明理由.(提示:

2)若,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題:直線與圓有兩個交點;命題: .

1)若為真命題,求實數(shù)的取值范圍;

2)若為真命題, 為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學有一調(diào)查小組為了解本校學生假期中白天在家時間的情況,從全校學生中抽取人,統(tǒng)計他們平均每天在家的時間在家時間在小時以上的就認為具有屬性,否則就認為不具有屬性

具有屬性

不具有屬性

總計

男生

20

50

70

女生

10

40

50

總計

30

90

120

1請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過

的前提下認為是否具有屬性與性別有關?

2采用分層抽樣的方法從具有屬性的學生里抽取一個人的樣本,其中男生和女生各多少人?

人中隨機選取人做進一步的調(diào)查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為數(shù)列的前項和,的等比中項.

(1)求數(shù)列的通項公式;

(2)若為整數(shù),,求數(shù)列的前項和.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知焦點在軸的橢圓的離心率與雙曲線的離心率互為倒數(shù),且過點.

1求橢圓方程;

2若直線與橢圓交于不同的兩點,點,有,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓的參數(shù)方程為為參數(shù),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.

1求圓的普通方程和直線的直角坐標方程;

2設直線軸,軸分別交于兩點,點是圓上任一點,求兩點的極坐標和面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線 ,焦點, 為坐標原點,直線(不垂直軸)過點且與拋物線交于兩點,直線的斜率之積為.

(1)求拋物線的方程;

(2)若為線段的中點,射線交拋物線于點,求證: .

查看答案和解析>>

科目: 來源: 題型:

【題目】公司從某大學招收畢業(yè)生,經(jīng)過綜合測試,錄用了名男生和名女生,這名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在分以上者到甲部門工作;分以下者到乙部門工作,另外只有成績高于分才能擔任助理工作。

(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取人,再從這人中選人,那么至少有一人是甲部門人選的概率是多少?

(2)若從所有甲部門人選中隨機選人,用表示所選人員中能擔任助理工作的男生人數(shù),寫出的分布列,并求出的數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,設橢圓的中心為原點,長軸在軸上,上頂點為,左、右焦點分別為,線段的中點分別為,且是面積為的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)過作直線交橢圓于兩點,使,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】設橢圓的焦點在軸上.

(1)若橢圓的焦距為1,求橢圓的方程;

(2)設分別是橢圓的左、右焦點,為橢圓上第一象限內(nèi)的點,直線軸于點,并且.證明:當變化時,點在定直線上.

查看答案和解析>>

同步練習冊答案