科目: 來源: 題型:
【題目】已知橢圓的焦距為2,過點.
(1)求橢圓的標準方程;
(2)設(shè)橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于A,B兩點,以線段AP為直徑的圓與直線的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學校開設(shè)了射擊選修課,規(guī)定向、兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學經(jīng)訓練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學每次射擊的結(jié)果相互獨立.現(xiàn)對小明同學進行以上三次射擊的考核.
(1)求小明同學恰好命中一次的概率;
(2)求小明同學獲得總分的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.
(1)求曲線的方程
(2)過點的直線與拋物線相交于兩點,拋物線在點A的切線與交于點N,求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調(diào)查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C:y=,D為直線y=上的動點,過D作C的兩條切線,切點分別為A,B.
(1)證明:直線AB過定點:
(2)若以E(0,)為圓心的圓與直線AB相切,且切點為線段AB的中點,求四邊形ADBE的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形,,,,圓臺的側(cè)面積為.若點C,D分別為圓,上的動點且點C,D在平面的同側(cè).
(1)求證:;
(2)若,則當三棱錐的體積取最大值時,求多面體的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于和之間,將測量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計該校高三年級男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點、間的距離為,動點滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】若數(shù)列滿足“對任意正整數(shù),都存在正整數(shù),使得”,則稱數(shù)列具有“性質(zhì)”.已知數(shù)列為無窮數(shù)列.
(1)若為等比數(shù)列,且,判斷數(shù)列是否具有“性質(zhì)”,并說明理由;
(2)若為等差數(shù)列,且公差,求證:數(shù)列不具有“性質(zhì)”;
(3)若等差數(shù)列具有“性質(zhì)”,且,求數(shù)列的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com