分析 首先把分式的分子和分母分解因式,把除法轉化為乘法,計算乘法,然后通分相減即可化簡,最后代入數(shù)值計算即可.
解答 解:原式=$\frac{y}{x-y}$+$\frac{{y}^{3}}{x(x-y)^{2}}$•$\frac{(x+y)(y-x)}{y(x+y)}$
=$\frac{y}{x-y}$-$\frac{{y}^{2}}{x(x-y)}$
=$\frac{xy-{y}^{2}}{x(x-y)}$
=$\frac{y(x-y)}{x(x-y)}$
=$\frac{y}{x}$,
當x=1,y=3時,原式=3.
點評 本題考查了分式的化簡求值,正確進行通分、約分、分解因式是關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com