如圖,動點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動,同時(shí)動點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動,2秒后兩點(diǎn)相距16個(gè)單位長度.己知?jiǎng)狱c(diǎn)A、B的速度比為1:3(速度單位:單位長度/秒).
(1)求兩個(gè)動點(diǎn)運(yùn)動的速度,以及A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動2秒后的位置所對應(yīng)的數(shù),并在數(shù)軸上標(biāo)出;
(2)若表示數(shù)0的點(diǎn)記為O,A、B兩點(diǎn)分別從(1)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動,再經(jīng)過多長時(shí)間OB=2OA?
(3)在(1)中A、B兩點(diǎn)同時(shí)向數(shù)軸負(fù)方向運(yùn)動時(shí),另一動點(diǎn)C和點(diǎn)B同時(shí)從B點(diǎn)位置出發(fā)向A運(yùn)動,當(dāng)遇到A后,立即返回向B點(diǎn)運(yùn)動,遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動,如此往返,直到B追上A時(shí),C立即停止運(yùn)動.若點(diǎn)C一直以20單位長度/秒的速度勻速運(yùn)動,那么點(diǎn)C從開始運(yùn)動到停止運(yùn)動,行駛的路程是多少個(gè)單位長度?
考點(diǎn):一元一次方程的應(yīng)用,數(shù)軸
專題:
分析:(1)設(shè)動點(diǎn)A的速度為x單位長度/秒,則動點(diǎn)B的速度為3x單位長度/秒,根據(jù)“動點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動,同時(shí)動點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動,2秒后兩點(diǎn)相距16個(gè)單位長度”列出方程2(x+3x)=16,解方程求出兩個(gè)動點(diǎn)運(yùn)動的速度,并在數(shù)軸上標(biāo)出;
(2)設(shè)經(jīng)過t秒時(shí)間OB=2OA,分兩種情況:①B在O的右邊;②B在O的左邊.由OB=2OA分別列出方程,解方程即可;
(3)設(shè)經(jīng)過y秒B追上A,根據(jù)追上時(shí)B運(yùn)動路程=A運(yùn)動路程+16列出方程,解方程即可.
解答:解:(1)設(shè)動點(diǎn)A的速度為x單位長度/秒,則動點(diǎn)B的速度為3x單位長度/秒,根據(jù)題意得
2(x+3x)=16,
解得x=2,
則3x=6,
即動點(diǎn)A的速度為2單位長度/秒,動點(diǎn)B的速度為6單位長度/秒,標(biāo)出A、B兩點(diǎn)如圖,


(2)設(shè)經(jīng)過t秒時(shí)間OB=2OA,分兩種情況:
①B在O的右邊時(shí),根據(jù)題意得
12-6t=2(4+2t),
解得t=0.4;
②B在O的左邊時(shí),根據(jù)題意得
6t-12=2(4+2t),
解得t=10.
即0.4秒或10秒時(shí)OB=2OA;

(3)設(shè)經(jīng)過y秒B追上A,根據(jù)題意得
6y=2y+16,
解得y=4.
點(diǎn)C行駛路程為20×4=80個(gè)單位長度.
點(diǎn)評:本題考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B在第一象限,∠OBA=90°,OB=2
3
,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)用甲、乙兩種保溫車將1800箱抗甲流疫苗運(yùn)往災(zāi)區(qū),每輛甲運(yùn)輸車最多可載250箱,每輛乙運(yùn)輸車最多可載150箱,并且安排車輛不超過10輛,那么甲運(yùn)輸車至少應(yīng)安排多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)因式分解:2x2-4x+2          
(2)解方程組:
4x-y-5=0
x
2
+
y
3
=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若|x-1|+|y+3|=0,求y-x-
1
2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:
1
3
+
12
-|
3
-2|
(2)解方程:
x+1
x-1
-
4
x2-1
=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組:
(1)
x-1=y+5
x+5=5(y-1)
  
(2)
x+1
3
=
y+3
4
=
x+y
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax2(a≠0)與直線y=2x-3交于A(1,b)和點(diǎn)B,求S△ABO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長分別是5,12,13,面積為30,△ABC∽△A′B′C′,△A′B′C′的最小邊長為4,則△A′B′C′最大邊上的高是
 

查看答案和解析>>

同步練習(xí)冊答案