如圖,矩形ABCD中,AB=8厘米,BC=12厘米,P、Q分別是AB、BC上運(yùn)動(dòng)的兩點(diǎn).若點(diǎn)P從點(diǎn)A出發(fā),以1厘米/秒的速度沿AB方向運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)以2厘米/秒的速度沿BC方向運(yùn)動(dòng),設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),△PBQ的面積等于12厘米2;
(2)當(dāng)x為何值時(shí),以P,B,Q為頂點(diǎn)的三角形與△BDC相似?
考點(diǎn):相似三角形的判定與性質(zhì),一元二次方程的應(yīng)用,矩形的性質(zhì)
專題:動(dòng)點(diǎn)型
分析:(1)根據(jù)三角形的面積公式求出即可;
(2)分為兩種情況:證相似,根據(jù)相似得出比例式,代入求出即可.
解答:解:(1)由題意得:
1
2
×BQ×BP=12,
1
2
•2x•(8-x)=12,
整理得:x2-8x+12=0,
解得:x=2或6,
即當(dāng)x為2或6時(shí),△PBQ的面積等于12厘米2;

(2)
①當(dāng)∠1=∠2時(shí),由∠PBQ=∠BCD=90°,
所以△QBP∽△BCD,
PB
DC
=
BQ
BC

8-x
8
=
2x
12
,
解得:x=
24
7
;
②當(dāng)∠1=∠3時(shí),由∠PBQ=∠BCD=90°,
所以△PBQ∽△BCD,
所以
PB
BC
=
BQ
DC
,
8-x
12
=
2x
8

解得:x=2;
即x=
24
7
或x=2時(shí),以P、B、Q為頂點(diǎn)的三角形與△BDC相似.
點(diǎn)評(píng):本題考查了矩形的性質(zhì),三角形的面積,相似三角形的性質(zhì)和判定的應(yīng)用,題目比較典型,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解決以下問題:
(1)2y2+5y+1=0;
(2)x2+2
2
x-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校為了提高學(xué)生的身體素質(zhì),每年都舉行“冬季三項(xiàng)比賽”,要求每位同學(xué)都從“跳繩、踢毽子、長(zhǎng)跑”三個(gè)項(xiàng)目中選取一個(gè)項(xiàng)目參加比賽.為了便于學(xué)校安排場(chǎng)地,體育組老師隨機(jī)抽取了部分學(xué)生,對(duì)他們報(bào)名情況進(jìn)行調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)上述信息,解答下列問題:
(1)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)抽取的學(xué)生人數(shù)為
 
;
(3)若該校有1200名學(xué)生,試計(jì)算抽取的比例,并估計(jì)該校中選擇“長(zhǎng)跑”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

α、β是關(guān)于x的方程4x2-4mx+m2+4m=0的兩個(gè)實(shí)根,并且滿足(α-1)(β-1)-1=
9
100
,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=2,AD=4,點(diǎn)P在AD上且AP=1.將一塊三角尺頂點(diǎn)放在點(diǎn)P處,三角尺的兩直角邊分別交AB、BC于點(diǎn)E、F.
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),
AP
AE
的值為
 

(2)探究:將三角尺從圖中的位置開始,繞點(diǎn)p順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止,在這個(gè)過程中,設(shè)CF=m.試解答:
①用含m的代數(shù)式表示四邊形BEPF的面積,并寫出m的取值范圍;
②連結(jié)BD,交線段PF于點(diǎn)G,當(dāng)△PDG是直角三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在直角坐標(biāo)系xOy中,點(diǎn)A(2,0),點(diǎn)B在第一象限且△OAB為正三角形,△OAB的外接圓交y軸的正半軸于點(diǎn)C,過點(diǎn)C的圓的切線交x軸于點(diǎn)D.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)求直線CD的函數(shù)解析式;
(3)設(shè)E、F分別是線段AB、AD上的兩個(gè)動(dòng)點(diǎn),且EF平分四邊形ABCD的周長(zhǎng).若F是OD中點(diǎn),求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE與FA交于點(diǎn)E,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
12
2
-
48
;                   
(2)
24
×
6
2
+
1
2
;
(3)(1-2sin60°)2+
1
tan60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

因式分解:y(y-2)-(m-1)(m+1).

查看答案和解析>>

同步練習(xí)冊(cè)答案