如圖,在平面直角坐標(biāo)系中,拋物線y=ax
2+bx+c(a≠0)與x軸交于A(6,0),C(-4,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)D、點(diǎn)E同時(shí)從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度分別沿x軸正半軸,y軸正半軸向點(diǎn)A、點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)D、E同時(shí)停止移動(dòng).過(guò)點(diǎn)D作x軸的垂線交拋物線于點(diǎn)F,交AB于點(diǎn)G,作點(diǎn)E關(guān)于直線DF的對(duì)稱點(diǎn)E′,連接FE′,射線DE′交AB于點(diǎn)H.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①t為何值時(shí)點(diǎn)E′恰好在拋物線上,并求此時(shí)△DE′F與△ADG重疊部分的面積;
②點(diǎn)P是平面內(nèi)任意一點(diǎn),若點(diǎn)D在運(yùn)動(dòng)過(guò)程中的某一時(shí)刻,形成以點(diǎn)A、E′、D、P為頂點(diǎn)的四邊形是菱形,那么請(qǐng)直接寫出點(diǎn)P的坐標(biāo).