解方程:(-x+2)2=(2x+3)2
考點(diǎn):解一元二次方程-因式分解法
專題:
分析:兩邊開方即可得出兩個(gè)一元一次方程,求出方程的解即可.
解答:解:原方程可以化為-x+2=2x+3或-x+2=-(2x+3),
解方程-x+2=2x+3得:x1=-
1
3
,
解方程-x+2=-(2x+3)得:x2=-5,
即原方程的解是x1=-
1
3
,x2=-5.
點(diǎn)評(píng):本題考查了解一元二次方程和解一元一次方程的應(yīng)用,解此題的關(guān)鍵是能把一元二次方程轉(zhuǎn)化成一元一次方程,題目比較好,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)(-3,m2+1)一定在(  )
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

完成下面證明:
如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC
(1)求證:∠EBD+∠EDB=90°
證明:∵BE平分∠ABD(已知)
∴∠EBD=
1
2
∠ABD
 

∵DE平分∠BDC(已知)
∴∠EDB=
1
2
∠BDC
 

∴∠EBD+∠EDB=
1
2
(∠ABD+∠BDC)
 

∵AB∥CD
∴∠ABD+∠BDC=180°
 

∴∠EBD+∠EDB=90°
(2)若將(1)中的條件“AB∥CD”與結(jié)論“∠EBD+∠EDB=90°”互換,其余條件不變,請(qǐng)你模仿以上推理過程,嘗試證明AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組
1
2
(x+4)<2
x+2
2
-1≥
x+3
3
,并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AO平分∠BAC,BO平分∠ABC,AO,BO相交于點(diǎn)O,OE⊥AC于E,OD⊥BC于D,AC=BC,求證:AE=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組
2x+3y=6
3x-2y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)均工作2天共收割小麥3.6公頃,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)均工作5天,共收割小麥8公頃.
(1)1臺(tái)大收割機(jī)和1臺(tái)收割機(jī)每天各收割小麥多少公頃?
(2)設(shè)大收割機(jī)每臺(tái)租金600/天,小收割機(jī)每臺(tái)租金120/天,某農(nóng)場(chǎng)準(zhǔn)備租用兩種收割機(jī)共15臺(tái),要求大收割機(jī)的數(shù)量不少于小收割機(jī)的一半,若每天總租金不超過5000元,若設(shè)大收割機(jī)要a臺(tái),①共有幾種租賃方案?寫出解答過程;②那種租賃方案每天收割小麥最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖正比例函數(shù)y=ax的圖象與反比例函數(shù)y=
k
x
的圖象交于A,B兩點(diǎn),已知點(diǎn)A的坐標(biāo)為(-
2
,2
2
).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)直接寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若多項(xiàng)式m2(x-2)+m(x-2)進(jìn)行因式分解,所得結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案