18.已知等腰三角形一腰上的高與另一腰的夾角為50°,求這個(gè)等腰三角形的底角的度數(shù).

分析 分兩種情況討論:①若∠A<90°;②若∠A>90°;先求出頂角∠BAC,即可求出底角的度數(shù).

解答 解:分兩種情況討論:
①若∠A<90°,如圖1所示:
∵BD⊥AC,
∴∠A+∠ABD=90°,
∵∠ABD=50°,
∴∠A=90°-50°=40°,
∵AB=AC,
∴∠ABC=∠C=$\frac{1}{2}$(180°-40°)=70°;
②若∠A>90°,如圖2所示:
同①可得:∠DAB=90°-50°=40°,
∴∠BAC=180°-40°=140°,
∵AB=AC,
∴∠ABC=∠C=$\frac{1}{2}$(180°-140°)=20°;
綜上所述:等腰三角形底角的度數(shù)為70°或20°

點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)以及余角和鄰補(bǔ)角的定義;注意分類討論方法的運(yùn)用,避免漏解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,四邊形ABCD是菱形,對(duì)角線AC=8,BD=6,E,F(xiàn)分別是AB,AD的中點(diǎn),連接EO并延長(zhǎng)交CD于G點(diǎn),連接FO并延長(zhǎng)交CB于H點(diǎn),△OEF與△OGH組成的圖形稱為蝶形,則蝶形的周長(zhǎng)為16.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算(須寫(xiě)出解題過(guò)程)
(1)12-(-18)+(-7)-15            
(2)-8÷(-2)+4×(-5)
(3)$49\frac{19}{21}+(-78.21)+27\frac{2}{21}+(-21.79)$
(4)$(\frac{1}{4}+\frac{5}{12}-\frac{5}{6})×60$
(5)[(-2)2×|-$\frac{1}{4}$|+(-10)2]+(-3)2
(6)-12-[1$\frac{3}{7}$+(-12)÷6]2×(-1$\frac{3}{4}$)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象交于點(diǎn)A(3,2).
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過(guò)M作直線MB‖x軸交y軸于點(diǎn)B.過(guò)點(diǎn)A作直線AC∥y軸交于點(diǎn)C,交直線MB于點(diǎn)D,當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說(shuō)明理由;
(4)探索:x軸上是否存在點(diǎn)P,使△OAP是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a+13=b+9=c+3,則a2+b2+c2-ab-cb-ac=( 。
A.259B.179.5C.76D.152

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各式中,能用平方差公式分解因式的是( 。
A.x2+y2B.x2-2x+1C.-x2+y2D.-x2-y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn),再求值:
(1)(a+b)(a-b)-(a+b)2+2b2,其中$a=\frac{1}{2}$,b=2
(2)$\frac{2m+2n}{{{m^2}-{n^2}}}$,其中m=-1,n=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.青山村種的水稻2010年平均每公頃產(chǎn)7200kg,2012年水稻平均每公頃產(chǎn)的產(chǎn)量是8400kg,設(shè)水稻每公頃產(chǎn)量的年平均增長(zhǎng)率為x,可列方程為(  )
A.7200(1+x)2=8400B.7200(1+x2)=8400C.7200(x2+x)=8400D.7200(1+x)=8400

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,△ABC中,AB=AC=5,AB的垂直平分線DE交AB、AC于E、D.
(1)若△BCD的周長(zhǎng)為8,求BC的長(zhǎng);
(2)若∠A=40°,求∠DBC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案