分析 根據等腰直角三角形性質求出∠CAE=∠CBF=135°,求出∠ECA+∠BCF=45°,∠E+∠ACE=45°,推出∠E=∠BCF,即可推出兩三角形相似;根據等腰直角三角形性質和銳角三角函數定義求出AC和BC長,根據相似得出比例式,代入即可求出答案.
解答 證明:∵△ABC為等腰直角三角形,∠ACB=90°,
∴AC=BC,
∴∠CAB=∠CBA=45°,
∴∠CAE=180°-45°=135°,
同理∠CBF=135°,
∴∠CAE=∠CBF,
∵∠ECF=135°,∠ACB=90°,
∴∠ECA+∠BCF=45°,
∵∠ECA+∠E=∠CAB=45°,
∴∠E=∠BCF,
∵∠CAE=∠CBF,
∴△ECA∽△CFB;
∵AB=x,∠CAB=45°,∠ACB=90°,AC=BC,
∴sin45°=$\frac{CB}{x}$,
∴CB=$\frac{\sqrt{2}}{2}$x=AC,
∵由(1)知△ECA∽△CFB,
∴$\frac{AE}{CB}$=$\frac{AC}{BF}$,
∴$\frac{2}{\frac{\sqrt{2}}{2}x}$=$\frac{\frac{\sqrt{2}}{2}x}{y}$,
∴y=$\frac{1}{4}$x2,
即y與x之間的函數關系式是y=$\frac{1}{4}$x2.
點評 本題考查了相似三角形的性質和判定,等腰直角三角形性質,銳角三角函數的定義等知識點,通過做此題培養(yǎng)了學生的分析問題和解決問題的能力.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | y=2(x+1)2+3 | B. | y=2(x+1)2-3 | C. | y=2(x-1)2-3 | D. | y=2(x-1)2+3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com