分析 如圖作CH⊥BA于H,AM⊥BC于M,PN⊥BC于N,因為PN∥AM,得$\frac{PN}{AM}=\frac{PD}{AD}$,所以欲求AP需要求出AM、AD、PD,利用勾股定理以及RT△30度角的性質(zhì),求出CH、AH、再利用面積法求出AM、CM、BM,利用△BAD∽△BCA求出BD問題即可解決.
解答 解:如圖作CH⊥BA于H,AM⊥BC于M,PN⊥BC于N,
∵∠BAC=120°,
∴∠CAH=180°-∠BAC=60°,
在RT△ACH中,∵AC=4,∠ACH=30°,
∴AH=2,HC=2$\sqrt{3}$,
在RT△BCH中,∵BH=4,HC=2$\sqrt{3}$,
∴BC=2$\sqrt{7}$,
∵$\frac{1}{2}$•BC•AM=$\frac{1}{2}$•AB•CH,
∴AM=$\frac{2\sqrt{21}}{7}$,
∵∠B=∠B,∠BAD=∠ACB,
∴△BAD∽△BCA,
∴$\frac{BA}{BC}=\frac{BD}{BA}$,
∴BD=$\frac{2\sqrt{7}}{7}$,
∵BM=$\sqrt{A{B}^{2}-A{M}^{2}}$=$\frac{4\sqrt{7}}{7}$,
∴DM=$\frac{2\sqrt{7}}{7}$,
∴AD=$\sqrt{D{M}^{2}+A{M}^{2}}$=$\frac{4\sqrt{7}}{7}$,
∵PN∥AM,
∴$\frac{PN}{AM}=\frac{PD}{AD}$,
∴$\frac{\frac{5\sqrt{21}}{7}}{\frac{2\sqrt{21}}{7}}=\frac{PD}{\frac{4\sqrt{7}}{7}}$,
∴PD=$\frac{10\sqrt{7}}{7}$,∴AP=2$\sqrt{7}$,
根據(jù)對稱性DP′=$\frac{10\sqrt{7}}{7}$,AP=DP′-AD=$\frac{3\sqrt{7}}{7}$.
故答案為2$\sqrt{7}$或$\frac{3\sqrt{7}}{7}$.
點評 本題考查相似三角形的判定和性質(zhì)、勾股定理、直角三角形30度角的性質(zhì)等知識,解題的關(guān)鍵是利用120°構(gòu)造特殊三角形(△ACH),學(xué)會應(yīng)用面積法求高,屬于中考常考題型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
字母 | a | b | c | d | e | f | g | h | i | j | k | l | m |
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | n | o | p | q | r | s | t | u | v | w | x | y | z |
序號 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}-\sqrt{2}$ | B. | $\sqrt{2}-\sqrt{3}$ | C. | $\sqrt{3}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com