如果點(diǎn)P(3-4x,x-1)在第二象限,那么x的取值范圍是( 。
A、x>
3
4
B、x>1
C、1<x<
4
3
D、
3
4
<x<1
考點(diǎn):點(diǎn)的坐標(biāo),解一元一次不等式組
專題:
分析:根據(jù)第二象限內(nèi)點(diǎn)的橫坐標(biāo)是負(fù)數(shù),縱坐標(biāo)是正數(shù)列出不等式組,然后求解即可.
解答:解:∵點(diǎn)P(3-4x,x-1)在第二象限,
3-4x<0①
x-1>0②
,
解不等式①得,x>
3
4

解不等式②得,x>1,
所以,x的取值范圍是x>1.
故選B.
點(diǎn)評(píng):本題考查了各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)特征以及解不等式,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)是解決的關(guān)鍵,四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列各組的條件,能判定△ABC≌△A′B′C′的是( 。
A、AB=A′B′,BC=B′C′,∠A=∠A′
B、∠A=∠A′,∠C=∠C′,AC=A′C′
C、AB=A′B′,S△ABC=S△A′B′C′
D、∠A=∠A′,∠B=∠B′,∠C=∠C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①一個(gè)多邊形最多有3個(gè)銳角; 
②n邊形有
n(n-3)
2
條對(duì)角線;
③三角形的三條高一定交于一點(diǎn);
④當(dāng)x為任意有理數(shù)時(shí),x2-6x+10的值一定大于1;
⑤方程x+3y=7有無(wú)數(shù)個(gè)整數(shù)解.
其中正確的有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)(-3,m2+1)一定在(  )
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

方程:①0.3x=1;②
x
2
=5x-1;③x2-4x=3;④-x=6;⑤x+2y=0.其中一元一次方程有( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在0,
4
,0.101001…,
22
27
,
π
2
,
39
這6個(gè)數(shù)中,無(wú)理數(shù)有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某校為了解九年級(jí)學(xué)生的身體狀況,在九年級(jí)四個(gè)班的160名學(xué)生中,按比例抽取部分學(xué)生進(jìn)行“引體向上”測(cè)試.所有被測(cè)試者的“引體向上”次數(shù)統(tǒng)計(jì)如表;各班被測(cè)試人數(shù)占所有被測(cè)試人數(shù)的百分比如扇形圖(九年四班相關(guān)數(shù)據(jù)未標(biāo)出).
(Ⅰ)九年四班中參加本次測(cè)試的學(xué)生的人數(shù)是多少?
(Ⅱ)求本次測(cè)試獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)估計(jì)該校九年級(jí)“引體向上”次數(shù)6次以上(不含6次)的有多少人?
 次數(shù)  3 10 
 人數(shù)  2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

完成下面證明:
如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC
(1)求證:∠EBD+∠EDB=90°
證明:∵BE平分∠ABD(已知)
∴∠EBD=
1
2
∠ABD
 

∵DE平分∠BDC(已知)
∴∠EDB=
1
2
∠BDC
 

∴∠EBD+∠EDB=
1
2
(∠ABD+∠BDC)
 

∵AB∥CD
∴∠ABD+∠BDC=180°
 

∴∠EBD+∠EDB=90°
(2)若將(1)中的條件“AB∥CD”與結(jié)論“∠EBD+∠EDB=90°”互換,其余條件不變,請(qǐng)你模仿以上推理過(guò)程,嘗試證明AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)均工作2天共收割小麥3.6公頃,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)均工作5天,共收割小麥8公頃.
(1)1臺(tái)大收割機(jī)和1臺(tái)收割機(jī)每天各收割小麥多少公頃?
(2)設(shè)大收割機(jī)每臺(tái)租金600/天,小收割機(jī)每臺(tái)租金120/天,某農(nóng)場(chǎng)準(zhǔn)備租用兩種收割機(jī)共15臺(tái),要求大收割機(jī)的數(shù)量不少于小收割機(jī)的一半,若每天總租金不超過(guò)5000元,若設(shè)大收割機(jī)要a臺(tái),①共有幾種租賃方案?寫(xiě)出解答過(guò)程;②那種租賃方案每天收割小麥最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案