分析 (1)方程兩邊同除以2,然后直接開(kāi)平方即可解答本題;
(2)利用配方法進(jìn)行解答即可;
(3)利用公式法進(jìn)行解答即可;
(4)移項(xiàng)利用平方差公式進(jìn)行解答即可;
(5)利用完全平方公式進(jìn)行解答.
解答 解:(1)2(x+1)2=8,
(x+1)2=4,
x+1=±2,
x=-1±2,
∴x1=1,x2=-3;
(2)x2+2x+1=8,
(x+1)2=8,
$x+1=±2\sqrt{2}$,
x=$-1±2\sqrt{2}$,
∴${x}_{1}=-1+2\sqrt{2},{x}_{2}=-1-2\sqrt{2}$;
(3)2x2-3x-1=0,
a=2,b=-3,c=-1,
△=(-3)2-4×2×(-1)=17>0,
$x=\frac{-(-3)±\sqrt{17}}{2×2}=\frac{3±\sqrt{17}}{4}$,
∴${x}_{1}=\frac{3+\sqrt{17}}{4},{x}_{2}=\frac{3-\sqrt{17}}{4}$;
(4)64(3y-2)2=9(2y-3)2
64(3y-2)2-9(2y-3)2=0,
[8(3y-2)+3(2y-3)][8(3y-2)-3(2y-3)]=0,
(30y-25)(18y-7)=0,
解得,${y}_{1}=\frac{5}{6},{y}_{2}=\frac{7}{18}$;
(5)(x-1)2-4(x-1)+4=0,
[(x-1)-2]2=0,
(x-3)2=0,
∴x-3=0,
得x1=x2=3.
點(diǎn)評(píng) 本題考查解方程,解題的關(guān)鍵明確什么是配方法、什么是公式法、什么是因式分解法,怎么用這些方法解答方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 3或6 | D. | 4或5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com