分析 (1)由∠CBE=∠ABD,得到∠ABC=∠DBE等量代換得到∠A=∠DBE,根據等腰三角形的性質得到∠A=∠ADB,∠DBE=∠BDE,等量代換得到∠A=∠DBE=∠BDE,推出△ABD∽△DEB,根據相似三角形的性質即可得到結論;
(2)通過△ABC≌△DBE,根據全等三角形的性質得到∠C=∠E,BE=BC,由于∠CFD=∠EFB,證得△CFD∽△EFB,根據相似三角形的性質得到結論.
解答 證明:(1)∵∠CBE=∠ABD,
∴∠ABC=∠DBE,
∵∠A=∠ABC,
∴∠A=∠DBE,
∵AB=BD,
∴∠A=∠ADB,
∵BE=DE,
∴∠DBE=∠BDE,
∴∠A=∠DBE=∠BDE,
∴△ABD∽△DEB,
∴$\frac{AD}{BD}=\frac{BD}{BE}$,
即BD2=AD•BE;
(2)在△ABC與△DBE中,
$\left\{\begin{array}{l}{∠A=∠BDE}\\{AB=DB}\\{∠ABC=∠DBE}\end{array}\right.$,
∴△ABC≌△DBE,
∴∠C=∠E,BE=BC,
∵∠CFD=∠EFB,
∴△CFD∽△EFB,
∴$\frac{BF}{DF}=\frac{BE}{CD}$,
∴$\frac{BF}{DF}=\frac{BC}{CD}$,
即:CD•BF=BC•DF.
點評 本題考查了相似三角形的判定和性質,等腰三角形的性質,全等三角形的判定和性質,熟練掌握相似三角形的判定和性質是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{AC}{AE}$=$\frac{CD}{EF}$ | B. | $\frac{AC}{BD}$=$\frac{CE}{DF}$ | C. | $\frac{AC}{CE}$=$\frac{AB}{CD}$ | D. | $\frac{AC}{DF}$=$\frac{BD}{CE}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com