【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級班的4名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查按騎自行車、乘公交車、步行、乘私家車、其他方式設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選,并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息,解答下列問題:
本次接受調(diào)查的總?cè)藬?shù)是______人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
在扇形統(tǒng)計(jì)圖中,“乘私家車的人數(shù)所占的百分比是______,“其他方式”所在扇形的圓心角度數(shù)是______度;
已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果,請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
【答案】(1)300,見解析;(2) ,24;(3)
【解析】
根據(jù)上學(xué)方式為“騎自行車”的學(xué)生數(shù)除以所占的百分比即可求出調(diào)查的學(xué)生總數(shù);根據(jù)總學(xué)生數(shù)求出上學(xué)方式為“步行”的學(xué)生數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;由可以求得在扇形統(tǒng)計(jì)圖中,“乘私家車”的人數(shù)所占的百分比;同理求得“其他方式”所占的百分比,進(jìn)而求得“其他方式”所在扇形的圓心角度數(shù);根據(jù)題意列表,得出所有等情況數(shù)和恰好選出1名男生和1名女生的情況,再根據(jù)概率公式計(jì)算即可.
本次接受調(diào)查的總?cè)藬?shù)是:人,
步行的人數(shù)有:人,補(bǔ)圖如下:
故答案為:300
在扇形統(tǒng)計(jì)圖中,“乘私家車的人數(shù)所占的百分比是:;
“其他方式”所在扇形的圓心角度數(shù)是:.
故答案是:;24;
根據(jù)題意列表如下:
男 | 男 | 女 | 女 | |
男 | --- | 男,男 | 女,男 | 女,男 |
男 | 男,男 | --- | 女,男 | 女,男 |
女 | 男,女 | 男,女 | --- | 女,女 |
女 | 男,女 | 男,女 | 女,女 | --- |
得到所有可能的情況有12種,其中恰好抽中一男一女的情況有8種,
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖矩形紙片ABCD中,,,P是邊BC上的動點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別是E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為.
(1)請用直尺(不帶刻度)和圓規(guī)作一條直線,它與軸和軸的正半軸分別交于點(diǎn)和點(diǎn),且與關(guān)于直線對稱.(作圖不必寫作法,但要保留作圖痕跡.)
(2)請求出(1)中作出的直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 隨著新學(xué)校建成越來越多,絕大部分孩子已能就近入學(xué),某數(shù)學(xué)學(xué)習(xí)興趣小組對八年級(1)班學(xué)生上學(xué)的交通方式進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果畫出下列兩個(gè)不完整的統(tǒng)計(jì)圖(圖1、圖2).請根據(jù)圖中的信息完成下列問題.
(1)該班參與本次問卷調(diào)查的學(xué)生共有多少人;
(2)請補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)在圖2的扇形統(tǒng)計(jì)圖中,“騎車”所在扇形的圓心角的度數(shù)是多少度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
對稱軸為______,頂點(diǎn)坐標(biāo)為______;
在坐標(biāo)系中利用五點(diǎn)法畫出此拋物線.
x | ______ | ______ | ______ | ______ | ______ | ||
y | ______ | ______ | ______ | ______ | ______ |
若拋物線與x軸交點(diǎn)為A、B,點(diǎn)在拋物線上,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的一條邊BC的長為5,另兩邊AB、AC的長是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根。
(1)求證:無論為何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根。
(2)為何值時(shí),△ABC是以BC為斜邊的直角三角形。
(3)為何值時(shí),△ABC是等腰三角形,并求△ABC的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,G為⊙O上一點(diǎn),連接AG交CD于K,在CD的延長線上取一點(diǎn)E,使EG=EK,EG的延長線交AB的延長線于F.
(1)求證:EF是⊙O的切線;
(2)連接DG,若AC∥EF時(shí).
①求證:△KGD∽△KEG;
②若,AK=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過A(6,0)和B(0,12)兩點(diǎn),且與直線y=x交于點(diǎn)C,點(diǎn)P(m,0)在x軸上運(yùn)動.
(1)求直線l的解析式;
(2)過點(diǎn)P作l的平行線交直線y=x于點(diǎn)D,當(dāng)m=3時(shí),求△PCD的面積;
(3)是否存在點(diǎn)P,使得△PCA成為等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點(diǎn)D是AB的中點(diǎn),過點(diǎn)B作CD的垂線,垂足為點(diǎn)E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com