分析 (1)求出算式結(jié)果比較即可;
(2)計算比較即可;
(3)先觀察已知算式的規(guī)律:第一個加數(shù)是自然數(shù),第二個加數(shù)的分子與第一個加數(shù)相同,而分母比第一個加數(shù)小1,乘法算式的兩個因數(shù)恰是前面算式中的兩個加數(shù),由此可以表示這一規(guī)律.
解答 解:(1)2+2=4,2×2=4,∴2+2=2×2;
3+$\frac{3}{2}$=$\frac{9}{2}$,3×$\frac{3}{2}$=$\frac{9}{2}$,∴3+$\frac{3}{2}$=3×$\frac{3}{2}$;
4+$\frac{4}{3}$=$\frac{16}{3}$,4×$\frac{4}{3}$=$\frac{16}{3}$,∴4+$\frac{4}{3}$=4×$\frac{4}{3}$;
5+$\frac{5}{4}$=$\frac{25}{4}$,5×$\frac{5}{4}$=$\frac{25}{4}$,∴5+$\frac{5}{4}$=5×$\frac{5}{4}$;
由上可知:同一行中兩個算式的結(jié)果相等.
(2)2014+$\frac{2014}{2013}$=$\frac{2014×2013+2014}{2013}$=$\frac{201{4}^{2}}{2013}$,2014×$\frac{2014}{2013}$=$\frac{201{4}^{2}}{2013}$,
∴2014+$\frac{2014}{2013}$=2014×$\frac{2014}{2013}$.
∴相等.
(3)觀察已知算式的規(guī)律:第一個加數(shù)是自然數(shù)用(n+1)表示,第二個加數(shù)的分子與第一個加數(shù)相同也用(n+1)表示,而分母比第一個加數(shù)小1用n表示,乘法算式的兩個因數(shù)恰是前面算式中的兩個加數(shù),由此可以表示:(n+1)+$\frac{n+1}{n}$=(n+1)×$\frac{n+1}{n}$.
點評 此題主要考查數(shù)的運算和比較以及規(guī)律的探索歸納,認(rèn)真計算,尋找算式中存在的規(guī)律是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 15海里 | B. | 10海里 | C. | 30海里 | D. | 45海里 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$和5 | B. | -3和$\frac{1}{3}$ | C. | -5和$-\frac{1}{5}$ | D. | 2和-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com