分析 過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=5,證△APM≌△BPN,推出AM=BN,求出OA+OB=ON+OM,代入求出即可.
解答 解:過P作PM⊥y軸于M,PN⊥x軸于N,如圖所示:
∵P(5,5),
∴PN=PM=5,
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,
則四邊形MONP是正方形,
∴OM=ON=PN=PM=5,
∵∠APB=90°,
∴∠APB=∠MON,
∴∠MPA=90°-∠APN,∠BPN=90°-∠APN,
∴∠APM=∠BPN,
在△APM和△BPN中,$\left\{\begin{array}{l}{∠APM=∠BPN}&{\;}\\{PM=PN}&{\;}\\{∠PMA=∠PNB}&{\;}\end{array}\right.$,
∴△APM≌△BPN(ASA),
∴AM=BN,
∴OA+OB=OA+0N+BN=OA+ON+AM=ON+OM=5+5=10
故答案為:10.
點(diǎn)評 本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用;通過作輔助線構(gòu)造三角形全等是解決問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 670 | B. | 668 | C. | 669 | D. | 671 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com