解方程:x2+6x+9=(6+2x)2
考點(diǎn):解一元二次方程-配方法
專題:計(jì)算題
分析:先把方程左邊配方得到(x+3)2=(2x+6)2,再利用直接開平方法得到x+3=±(2x+6),然后解兩個(gè)一次方程即可.
解答:解:(x+3)2=(2x+6)2,
x+3=±(2x+6),
即x+3=2x+6或x+3=-(2x+6),
所以x1=3,x2=-3.
點(diǎn)評:本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=kx的圖象與反比例函數(shù)y2=
m
x
圖象交于A、B兩點(diǎn).
(1)根據(jù)圖象,求一次函數(shù)和反比例函數(shù)解析式;
(2)根據(jù)圖象直接寫出kx>
m
x
的解集為
 
;
(3)若點(diǎn)P在y軸上,且滿足以點(diǎn)A、B、P為頂點(diǎn)的三角形是直角三角形,試直接寫出點(diǎn)P所有可能的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)不透明的布袋中裝有5個(gè)大小、質(zhì)地完全相同的乒乓球,每個(gè)乒乓球上分別標(biāo)有1、2、3、4、5.小王先從布袋中隨機(jī)抽取一個(gè)乒乓球(不放回去),再從剩下的4個(gè)球中隨機(jī)抽取第二個(gè)乒乓球.
(1)請你列出小王抽取乒乓球的所有可能的結(jié)果;
(2)求兩次取得的乒乓球上的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=
1
8
ax2-ax-6(a>0).
(1)該拋物線的對稱軸是直線
 

(2)若拋物線與y軸交于點(diǎn)D,與x軸交于點(diǎn)A、B,點(diǎn)C為拋物線的頂點(diǎn),過點(diǎn)C作CF⊥y軸于點(diǎn)F,直線CD交x軸于點(diǎn)E,如圖.
①若DF=CF,求a的值.
②是否存在實(shí)數(shù)a,使EO=CF?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組:
4x-1≥x+1
1-x
2
<x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在方格紙中,每個(gè)小正方形的邊長為1,有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上),點(diǎn)C在直線l上.
(1)作出△ABC關(guān)于直線l對稱的圖形△A1B1C1(A與A1對應(yīng),B與B1對應(yīng));
(2)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究題:對于正數(shù)a和b,有下列命題:
ab
=1,則a+b≥2;若
ab
=
3
2
,則a+b≥3;
ab
=2,則a+b≥4;若
ab
=
5
2
,則a+b≥5.
根據(jù)以上四個(gè)命題的規(guī)律猜想:
①若
ab
=5,則a+b≥
 
;
②對于任意正數(shù)x、y,存在的規(guī)律可以表示為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:20132-2014×2012.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

大學(xué)生小張利用暑假50天在一超市勤工儉學(xué),被安排銷售一款成本為40元/件的新型商品,此類新型商品在第x天的銷售量p件與銷售的天數(shù)x的關(guān)系如下表:
x(天)12350
p(件)11811611420
銷售單價(jià)q(元/件)與x滿足:當(dāng)1≤x<25時(shí)q=x+60;當(dāng)25≤x≤50時(shí)q=40+
1125
x

(1)請分析表格中銷售量p與x的關(guān)系,求出銷售量p與x的函數(shù)關(guān)系.
(2)求該超市銷售該新商品第x天獲得的利潤y元關(guān)于x的函數(shù)關(guān)系式.
(3)這50天中,該超市第幾天獲得利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案