【題目】某校在八年級開展環(huán)保知識問卷調(diào)查活動,問卷一共10道題,八年級(三)班的問卷得分情況統(tǒng)計圖如下圖所示:
(1)扇形統(tǒng)計圖中,______________;
(2)根據(jù)以上統(tǒng)計圖中的信息,
①問卷得分的極差是_____________分;②問卷得分的眾數(shù)是____________分;③問卷得分的中位數(shù)是______________分;
(3)請你求出該班同學(xué)的平均分.
【答案】(1);(2)①40,②90,③85;(3)82.6.
【解析】
(1)依據(jù)扇形統(tǒng)計圖中各項目的百分比,即可得到a的值;
(2)依據(jù)極差、眾數(shù)和中位數(shù)的定義進行計算,即可得到答案;
(3)依據(jù)加權(quán)平均數(shù)的算法進行計算,即可得到該班同學(xué)的平均分.
(1);
(2)①問卷得分的極差是100-60=40(分),
②90分所占的比例最大,故問卷得分的眾數(shù)是90分,
③7÷14=50(人),
70分的人數(shù)為:50×16%=8(人)
80分的人數(shù)為:50×20%=10(人)
90分的人數(shù)為:50×30%=15(人)
100分的人數(shù)為:50×20%=10(人)
所以,問卷得分的中位數(shù)是從低分到高分排列第25,26個學(xué)生分數(shù)的平均數(shù),即(分);
(3)該班同學(xué)的平均分為:
(分)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1,x2.
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點,連接OB,且OB=6,過點B作⊙O的切線BD,切點為D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的頂點A、C、D都在⊙O上,AB與⊙O相切于點A,BC與⊙O交于點E,設(shè)∠OCD=α,∠BAD=β.
(1)求證:AB=AE;
(2)試探究α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E是BC的中點,以點A為中心,把△ABE繞點A順時針旋轉(zhuǎn)90°,設(shè)點E的對應(yīng)點為F.
(1)畫出旋轉(zhuǎn)后的三角形.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求點E運動到點F所經(jīng)過的路徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點D在AB上,以BD為直徑的⊙O切AC于點E,連接DE并延長,交BC的延長線于點F.
(1)求證:△BDF是等邊三角形;
(2)連接AF、DC,若BC=3,寫出求四邊形AFCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當(dāng)其中一點到達終點時,另一點也隨之停止運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.,并指出此時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一條直線過點,且與拋物線交于A、B兩點,其中點A的橫坐標(biāo)是-2.
⑴求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo) ;
⑵在軸上是否存在點C,使得ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
⑶.過線段AB上一點P,作PM∥軸,交拋物線于點M,點M在第一象限;點,當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB = AC = 2,∠B =∠C = 50°,點D在線段BC上運動(點D不與B、C重合),連結(jié)AD,作∠ADE = 50°,DE交線段AC于點E.
(1)若DC = 2,求證:△ABD≌△DCE;
(2)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請求出∠BDA的度數(shù);若不可以,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com