已知a=lg2,b=lg3,則log36=
 
(用a、b表示).
考點(diǎn):換底公式的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對(duì)數(shù)的換底公式和運(yùn)算法則即可得出.
解答: 解:∵a=lg2,b=lg3,
∴l(xiāng)og36=
lg2+lg3
lg3
=
a+b
b
=
a
b
+1

故答案為:
a
b
+1
點(diǎn)評(píng):本題考查了對(duì)數(shù)的換底公式和運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若一元二次方程mx2-(m+1)x+3=0的兩個(gè)實(shí)根都小于2,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實(shí)數(shù)k,使得
x
3x+y
+
y
x+3y
≤k<
2
z
+
1
1-3z
當(dāng)xy>0,0<z<
1
3
時(shí)恒成立?若存在,求出k的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)奇偶性:
(1)f(x)=
1-x2
+
x2-1

(2)f(x)=
x-1
+
1-x

(3)f(x)=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差大于0,a3,a5是方程x2-14x+45=0的兩根.
(1)求數(shù)列{an}的通項(xiàng)公式;      
(2)記bn=2an+n,求數(shù)列{bn}的前n和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x2-
2
x
)6
展開式的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1
2+i
(其中i為虛數(shù)單位)的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|-1≤x-1≤2},B={x|x-a≥0,a∈R},若∁UA∩∁UB={x|x<0},∁UA∪∁UB={x|x<1或x>3},則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且對(duì)一切x>0,y>0滿足f(xy)=f(x)+f(y)則不等式f(x+6)+f(x)<2f(4)的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案