單調(diào)遞增數(shù)列的前項和為,且滿足,
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,求數(shù)列的前項和.
(1);(2) .
解析試題分析:(1)由,先得到,當(dāng)時:,得到和之間關(guān)系,,故得出是首項為1,公差為1的等差數(shù)列;(2)先由對數(shù)式的運(yùn)算性質(zhì)求出,然后用錯位相減法得到.
試題解析:(1)將代入 (1) 解得:
當(dāng)時: (2)
由(1)-(2)得: 整理得:
即:或 ()
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/8/4epmt1.png" style="vertical-align:middle;" />單調(diào)遞增,故:
所以:是首項為1,公差為1的等差數(shù)列,
(2)由
得: 即:
利用錯位相減法解得:.
考點(diǎn):1.等差數(shù)列通項公式;2.錯位相減法;3.對數(shù)式的運(yùn)算性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列和等比數(shù)列中,a1=2, 2b1=2, b6=32, 的前20項和S20=230.
(Ⅰ)求和;
(Ⅱ)現(xiàn)分別從和的前4中各隨機(jī)抽取一項,寫出相應(yīng)的基本事件,并求所取兩項中,滿足an>bn的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列中,且,,成等差數(shù)列,
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項和為,且.
(I)求數(shù)列的通項公式;
(II)設(shè)等比數(shù)列,若,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前四項和為10,且成等比數(shù)列
(1)求通項公式
(2)設(shè),求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com