已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當k∈(-∞,0)∪(4,+∞)時,f(x)=k只有一個實根;當k∈(0,4)時,f(x)=k只有3個實根.現(xiàn)給出下列4個命題:
①f(x)=4和f′(x)=0有一個相同的實根;
②f(x)=0和f′(x)=0有一個相同的實根;
③f(x)=3的任一實根大于f(x)=1的任一實根;
④f(x)=-5的任一實根小于f(x)=2的任一實根.
其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應(yīng)用,函數(shù)的零點
專題:數(shù)形結(jié)合法
分析:可根據(jù)條件畫出草圖,注意0,4分別是函數(shù)的極小值和極大值,然后畫出直線一一加以判斷.
解答: 解:由題意得函數(shù)y=f(x)的圖象應(yīng)為先增后減再增,
且極大值為4,極小值為0.
又f(x)-k=0的根的問題可轉(zhuǎn)化為f(x)=k,
即直線y=k和y=f(x)圖象交點個數(shù)問題.
通過圖象逐一判斷,只有③不對,
故選C.
點評:本題考查方程根的問題,方程根的問題?函數(shù)的零點問題?兩個函數(shù)圖象的交點問題,從而轉(zhuǎn)化為數(shù)形結(jié)合求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)是定義在區(qū)間[-3,3]上的偶函數(shù),且在[-3,0]上單調(diào)遞增,若實數(shù)a滿足f(2a-1)<f(a2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個骰子連續(xù)投兩次,點數(shù)和為ξ時的概率最大,則ξ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
2
x
與直線y=x-1及x=4所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某安裝公司一名汽車駕駛員,要將30根水泥電線桿從存放處運往1000m遠的地方,給安裝工人進行安裝.他在1000m起始處放第一根,以后每隔50米放一根.已知這名駕駛員駕駛的汽車每次至多只能運3根,當他完成這項任務(wù)返回水泥電線桿存放處時,他駕駛的汽車最小行程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
4
3
5
B、
8
3
C、4
5
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列程序語言中表達式的值正確的是(  )
A、6*SQR(4)+3^2*2=154
B、3*(5+4)+SQR(9)^2=17
C、[5+3*(12-7)]/4=5
D、(2+3)*5-4+2*3*SQR(4)^2=72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,函數(shù)y=
x
3
+
3
x
的圖象是雙曲線,下列關(guān)于該雙曲線的性質(zhì)的描述中正確的個數(shù)是( 。
①漸近線方程是y=
3
3
x
和x=0;
②對稱軸所在的直線方程為y=
3
x
y=-
3
3
x

③實軸長和虛軸長之比為3:
3
;
④其共軛雙曲線的方程為y=
x
3
-
3
x
A、1個B、2個C、3個D、4個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2013年11月11日在某淘寶店的網(wǎng)購情況,隨機抽查了該市當天60名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計表(如表):
網(wǎng)購金額
(單位:千元)
頻數(shù) 頻率
(0,0.5] 3 0.05
(0.5,1] x p
(1,1.5] 9 0.15
(1.5,2] 15 0.25
(2,2.5] 18 0.30
(2.5,3] y q
合計 60 1.00
若網(wǎng)購金額超過2千元的顧客定義為“網(wǎng)購達人”,網(wǎng)購金額不超過ξ千元的顧客定義為“非網(wǎng)購達人”,已知“非網(wǎng)購達人”與“網(wǎng)購達人”人數(shù)比恰好為3:2.
(1)試確定x,y,p,q的值,并補全頻率分布直方圖(如圖).
(2)該營銷部門為了進一步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定10人,若需從這10人中隨機選取3人進行問卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購達人”的人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案