定義對(duì)?x∈R,?T∈R,使得f(x+T)=f(x),則稱f(x)為周期函數(shù),若f(x+1)=-f(x),且f(x)為R上的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x2,同時(shí),在R上存在一個(gè)函數(shù)g(x)=lgx,在R上討論函數(shù)y=f(x)與y=g(x)的圖象的交點(diǎn)個(gè)數(shù)( 。
A、10B、9C、8D、7
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷,函數(shù)的周期性
專(zhuān)題:壓軸題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得f(x+2)=f(x),從而可得f(x)是以2為周期的函數(shù),作出兩函數(shù)的圖象,可得交點(diǎn)個(gè)數(shù).
解答: 解:∵f(x+1)=f(x-1),∴f(x+2)=f(x),∴函數(shù)f(x)為周期為2的周期函數(shù)
∵當(dāng)x∈[0,1]時(shí),f(x)=x2,
∴x∈[-1,1]時(shí),f(x)=x2
∴函數(shù)f(x)的圖象和y=lgx的圖象如圖:

由圖數(shù)形結(jié)合可得函數(shù)y=f(x)與函數(shù)y=lgx的圖象的交點(diǎn)個(gè)數(shù)為9個(gè)
故選B.
點(diǎn)評(píng):本題考查函數(shù)的周期性與奇偶性的應(yīng)用,作出函數(shù)的圖象是關(guān)鍵,也是難點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐V-ABCD中,底面四邊形ABCD是邊長(zhǎng)為4的菱形,并且∠BAD=120°,VA=3,VA⊥底面ABCD,O是AC、BD的交點(diǎn),OE⊥VC于E.求:
(1)點(diǎn)V到CD的距離;
(2)異面直線VC與BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示:矩形AnBnCnDn的一邊AnBn在x軸上,另兩個(gè)頂點(diǎn)Cn、Dn在函數(shù)f(x)=x+
1
x
(x>0)
的圖象上,若點(diǎn)Bn的坐標(biāo)為(n,0)(n≥2,n∈N*)),矩形AnBnCnDn的周長(zhǎng)記為an,則a2+a3+…+a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z=2x+y,x,y滿足
y≥x
x+y≤2
x≥m
,且z的最大值是最小值的4倍,則m的值是( 。
A、
1
4
B、
1
5
C、
1
6
D、
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題
(1)(矩陣與變換選做題)已知矩陣M=
10
02
,曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線C,則C的方程是
 

(2)(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)(2,
π
2
)到直線ρsin(θ+
π
4
)+
2
=0
的距離是
 

(3)(不等式選講選做題)若關(guān)于x的不等式|x-1|-|x+2|≥a的解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)市場(chǎng)調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬(wàn)元,每生產(chǎn)x萬(wàn)件,需另投入流動(dòng)成本為W(x)萬(wàn)元,在年產(chǎn)量不足8萬(wàn)件時(shí),W(x)=
1
3
x2+x
(萬(wàn)元),在年產(chǎn)量不小于8萬(wàn)件時(shí),W(x)=6x+
100
x
-38
(萬(wàn)元).通過(guò)市場(chǎng)分析,每件產(chǎn)品售價(jià)為5元時(shí),生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫(xiě)出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(萬(wàn)件)的函數(shù)解析式;
(注:年利潤(rùn)=年銷(xiāo)售收入-固定成本-流動(dòng)成本)
(2)年產(chǎn)量為多少萬(wàn)件時(shí),在這一商品的生產(chǎn)中所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinA+sinB=sinC•(cosA+cosB),試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知fn(x)=(1+2
x
n,n∈N*
(1)若g(x)=f4(x)+f5(x)+f6(x),求g(x)中含x2項(xiàng)的系數(shù);
(2)若pn是fn(x)展開(kāi)式中所有無(wú)理項(xiàng)的二項(xiàng)式系數(shù)和,數(shù)列{an}是各項(xiàng)都大于1的數(shù)組成的數(shù)列,試用數(shù)學(xué)歸納法證明:
(1+a1)(1+a2)…(1+an)
a1a2an+1
pn

查看答案和解析>>

同步練習(xí)冊(cè)答案