f(x)=log2(x2-5x+6)的單調(diào)增區(qū)間為
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=x2-5x+6>0,求得函數(shù)的定義域,且f(x)=g(t)=log2t,根據(jù)復(fù)合函數(shù)的單調(diào)性,本題即求函數(shù)t在定義域內(nèi)的增區(qū)間.再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的增區(qū)間.
解答: 解:令t=x2-5x+6>0,求得 x<2,或x>3,
故函數(shù)的定義域為(-∞,2)∪(3,+∞),
且f(x)=g(t)=log2t,
根據(jù)復(fù)合函數(shù)的單調(diào)性,本題即求函數(shù)t在定義域內(nèi)的增區(qū)間.
利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域(-∞,2)∪(3,+∞)內(nèi)的增區(qū)間為(3,+∞),
故答案為:(3,+∞).
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),O是原點,向量
OA
對應(yīng)的復(fù)數(shù)是2+i.
(1)如果點A關(guān)于實軸的對稱點為B,求向量
OB
對應(yīng)的復(fù)數(shù);
(2)如果(1)中點B關(guān)于虛軸的對稱點為C,求點C對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在x=2處取得極值4,且其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過坐標原點.
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[-3,3],求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,E、F分別是腰AD、BC的中點,M在線段EF上,且EM=2MF,下底是上底的2倍,若
AB
=
a
BC
=
b
,用
a
,
b
表示
AM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=30°,∠B=90°,D為AC中點,E為BD的中點,AE的延長線交BC于F,將△ABD沿BD折起至△PBD,使∠PDC=90°.

(Ⅰ)求證:PF⊥平面BCD;
(Ⅱ)求直線PC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)(1+i)(1+mi)是實數(shù),則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的積都為同一個常數(shù),那么這個數(shù)列叫做等積數(shù)列,這個常數(shù)叫做該數(shù)列的公積,已知數(shù)列{an}是等積數(shù)列,且a1=3,公積為15,那么a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AM
=
1
4
AB
+
3
4
AC
,則△ABM與△ABC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當x≠0時,f′(x)+
f(x)
x
>0,若a=
1
2
f(
1
2
)
,b=-2f(-2),c=ln
1
2
f(ln2),則a,b,c的大小關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊答案