函數(shù)y=
5
4
-sin2x-3cosx的最小值是
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值
分析:把函數(shù)解析式化成關(guān)于cosx的一元二次函數(shù),根據(jù)cosx的范圍和二次函數(shù)的性質(zhì)確定函數(shù)的最小值.
解答: 解:y=
5
4
-sin2x-3cosx=
5
4
-1+cos2x-3cosx=cos2x-3cosx+
1
4
,
∵-≤cosx≤1,令t=cosx,則-1≤t≤1,
f(t)=t2-3t+
1
4
,對(duì)稱軸為t=
3
2
,
函數(shù)在[-1,1]上單調(diào)減,
∴f(t)min=f(1)=-
7
4

故答案為:-
7
4
點(diǎn)評(píng):本題主要考查了二次函數(shù)的性質(zhì),換元法的應(yīng)用.考查了學(xué)生轉(zhuǎn)化與化歸思想和數(shù)形結(jié)合思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,矩陣A=
-a1
2b
所對(duì)應(yīng)的變換將直線x+y-1=0變換為自身.
①求a,b的值;
②求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y,m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(Ⅰ)若x-1比1遠(yuǎn)離0,求x的取值范圍;
(Ⅱ)對(duì)任意兩個(gè)不相等的正數(shù)a,b,證明:
a2+b2
2
比(
a+b
2
2遠(yuǎn)離0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

NBA(美國(guó)職業(yè)籃球聯(lián)賽)決賽實(shí)行7局制,比賽先勝4局者獲得比賽的勝利(每局比賽都必須分出勝負(fù),沒有平局),比賽隨即結(jié)束.除第七局甲隊(duì)獲勝的概率是
1
2
外,其余每局比賽甲隊(duì)獲勝的概率都是
2
3
,假設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)求甲隊(duì)以4:0獲得勝利的概率;
(2)若每局比賽勝利方得1分,對(duì)方得0分,求乙隊(duì)最終比賽總得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某宿舍的5位同學(xué)每人寫一張明信片并放在一個(gè)不透明的箱子中,每人從中任意取出一張,記一個(gè)“恰當(dāng)”為有一位同學(xué)取到的明信片不是自己寫的,用ξ表示“恰當(dāng)”的個(gè)數(shù),則隨機(jī)變量ξ的數(shù)學(xué)期望是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(
π
2
+x)cos(
π
6
-x)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
6
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinxcosx+sin2x的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案