設(shè)函數(shù)f(x)=mlnx+
1
x
-x,g(x)=
1
m
lnx.
(1)當(dāng)x≥1時(shí),總有f(x)≤0,求m的取值范圍;
(2)當(dāng)m∈[3,+∞)時(shí),曲線F(x)=f(x)+g(x)上總存在相異兩點(diǎn)A(x1,f(x1))、B(x2,f(x2)),使得曲線F(x)在點(diǎn)A、B處的切線互相平行,求x1+x2的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的導(dǎo)數(shù)和單調(diào)性之間的關(guān)系即可m的取值范圍;
(2)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合基本不等式的性質(zhì)即可得到結(jié)論.
解答: 解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),函數(shù)的導(dǎo)數(shù)為f′(x)=
m
x
-
1
x2
-1=-
1
x2
(x2-mx+1)
,
令h(x)=x2-mx+1,(x≥1)
當(dāng)m≤2時(shí),h(x)≥0,f′(x)<0,f(x)在區(qū)間(0,+∞)上是減函數(shù)f(x)≤f(1)=0,成立;
當(dāng)m>2時(shí),h(x)=0有兩根,不妨設(shè)x1<x2
∵h(yuǎn)(1)=2-m<0,∴x1<1<x2,
∴由f′(x)>0可得x1<x<x2,
當(dāng)x∈[1,x2)時(shí),h(x)=x2-mx+1<0,此時(shí)f′(x)>0,
∴當(dāng)m>2時(shí),當(dāng)x∈[1,+∞),f(x)>f(1)=0,不滿足條件,
綜上m的取值范圍;是(-∞,2].
(2)由題意可得F′(x1)=F′(x2),x1>0,x2>0,x1≠x2,
m+
1
m
x1
-
1
x12
-1=
m+
1
m
x2
-
1
x22
-1
,
∴x1+x2=(m+
1
m
)x1x2
∵x1≠x2,
由基本不等式可得x1+x2=(m+
1
m
)x1x2<(
x1+x2
2
2恒成立,
即x1+x2
4
m+
1
m
,在m∈[3,+∞)時(shí)恒成立,
∵m+
1
m
在m∈[3,+∞)上是增函數(shù),
∴m+
1
m
≥3+
1
3
=
10
3
,
4
m+
1
m
4
10
3
=
6
5
,
∴x1+x2
6
5

即x1+x2的取值范圍是(
6
5
,+∞).
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的應(yīng)用,利用函數(shù)單調(diào)性,切線斜率和導(dǎo)數(shù)的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),運(yùn)算量較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的三邊分別為a,b,c.已知a=5,b=2,B=120°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1+
a2
2
+…+
an
n
=2n-1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
2n-1
(n+1)an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=3bn-λ•2
an
3
,(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,PD=AD.
(1)求證:平面PAC⊥平面PBD;
(2)求PC與平面PBD所成角的大;
(3)在線段PB上找出一點(diǎn)E,使得PC⊥平面ADE,并求出此時(shí)二面角A-ED-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(x-2)(x-
a-1
a
),其中a≠0.
(Ⅰ)若a=1,求f(x)在區(qū)間[0,3]上的最大值和最小值;
(Ⅱ)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
a2-1
(ax-
1
ax
),(a>0,且a≠1)
(1)用定義法判斷y=f(x)的單調(diào)性.
(2)若當(dāng)時(shí)x<2,f(x)<4恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+2.
(1)求f(2);
(2)指出函數(shù)的單調(diào)遞減區(qū)間;
(3)當(dāng)a=1且x∈[-1,3]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸與短軸之和為2
2
+2,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x+2y+
5
=0相切.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A,B,設(shè)P為橢圓上一點(diǎn),且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
-
PB
|<
2
5
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案