精英家教網 > 高中數學 > 題目詳情
已知|
a
|=4,|
b
|=2,且
a
b
夾角為120°求:
(Ⅰ)(
a
+3
b
)•(
a
-3
b
);
(Ⅱ)
a
a
+
b
的夾角θ.
考點:數量積表示兩個向量的夾角,平面向量數量積的運算
專題:平面向量及應用
分析:(Ⅰ)(
a
+3
b
)•(
a
-3
b
)=
a
2
-9
b
2
,代入已知數據計算可得;(Ⅱ)由已知數據可得
a
•(
a
+
b
)和|
a
+
b
|的值,而cosθ=
a
•(
a
+
b
)
|
a
||
a
+
b
|
,代入計算可得.
解答: 解:(Ⅰ)∵|
a
|=4,|
b
|=2,且
a
b
夾角為120°,
∴(
a
+3
b
)•(
a
-3
b
)=
a
2
-9
b
2

=42-9×22=-20;
(Ⅱ):|
a
|=4,|
b
|=2,且
a
b
夾角為120°,
a
•(
a
+
b
)=
a
2
+
a
b
=16+4×2×(-
1
2
)=12,
|
a
+
b
|=
(
a
+
b
)2
=
a
2
+
a
b
+
b
2

=
16+4×2×(-
1
2
)+4
=4
∴cosθ=
a
•(
a
+
b
)
|
a
||
a
+
b
|
=
12
4×4
=
3
4

a
a
+
b
的夾角θ=arccos
3
4
點評:本題考查平面向量的數量積的運算,涉及模長公式和夾角公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等比數列{an}的前n項和為Sn,已知S1,S3,S2成等差數列.
(1)求數列{an}的公比q.
(2)若a1-a3=3,求Sn,并討論Sn的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=8x的焦點為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,且橢圓的長軸長為4
2
,左右頂點分別為A,B,經過橢圓左焦點的直線l與橢圓交于C、D兩點.
(1)求橢圓標準方程:
(2)記△ABD與△ABC的面積分別為S1和S2,且|S1-S2|=4,求直線l方程;
(3)橢圓的上頂點G作直線m、n,使m⊥n,直線m、n分別交橢圓于點P、Q.問:PQ是否過一定點,若是求出該點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=cos4x-2sinx•cosx-sin4x
(1)求f(x)的圖象的對稱軸;
(2)當x∈[0,
π
2
]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了4次試驗,收集數據如下:
零件數x(個) 10 20 30 40
加工時間y(min) 60 68 75 85
(Ⅰ)求回歸方程;
(Ⅱ)如果加工的零件是50個,預測所要花費的時間.(參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}的前n項和為Sn,滿足Sn=n2+2n.等比數列{bn}滿足:b1=3,b4=81.
(1)求證:數列{an}為等差數列;
(2)若Tn=
a1
b1
+
a2
b2
+
a3
b3
+…+
an
bn
,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a3-a1=3,a1+a2=3.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若等差數列{bn}滿足b1=a2,b3=a2+a3,求數列{bn}的前10項的和T10

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式
2-x
x+3
>0的解集為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=logax-x+1,(a>0,且a≠1),如f(x)≤0對x∈(0,+∞)恒成立,則a的取值集合為
 

查看答案和解析>>

同步練習冊答案