設(shè)An,Bn是等差數(shù)列{an}、{bn}的前n項(xiàng)和,若
An
Bn
=
7n+45
n+3
,則使得
an
bn
為整數(shù)的正整數(shù)n的個(gè)數(shù)有
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)等差數(shù)列的性質(zhì),利用等差數(shù)列前n項(xiàng)和與某些特殊項(xiàng)之間的關(guān)系解題.
解答: 解:由等差數(shù)列的前n項(xiàng)和及等差中項(xiàng),
可得
an
bn
=
2an
2bn
=
a1+a2n-1
b1+b2n-1
=
a1+a2n-1
2
×(2n-1)
b1+b2n-1
2
×(2n-1)
=
A2n-1
B2n-1
=
7(2n-1)+45
2n-1+3

=
14n+38
2n+2
=
7n+19
n+1
=7+
12
n+1
,(n∈N*),
an
bn
為整數(shù),則n+1是12的正約數(shù),
故n=1,2,3,5,11時(shí),滿足條件.
故答案為:5
點(diǎn)評(píng):本題主要考查等差數(shù)列的性質(zhì)、等差中項(xiàng)的綜合應(yīng)用以及分離常數(shù)法,已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,則有如下關(guān)系
an
bn
=
2an
2bn
=
a1+a2n-1
b1+b2n-1
=
a1+a2n-1
2
×(2n-1)
b1+b2n-1
2
×(2n-1)
=
A2n-1
B2n-1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:a,b,c都是正實(shí)數(shù),且ab+bc+ca=1,求證:a2+b2+c2≥1.
(2)若下列三個(gè)方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一個(gè)方程有實(shí)根,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a=4,b=10,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2014π
3
,b=cos
2014π
3
,c=tan
2014π
3
,則a<b<c;
④將函數(shù)y=sin(3x+
π
4
)的圖象向左平移個(gè)
π
6
單位,得到函數(shù)y=cos(3x+
π
4
)的圖象.其中正確命題的編號(hào)是
 
.(寫出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1+a2=3,a3+a4=6,則a7+a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=0,an+1=
3
+an
1-
3
an
,則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x-
1
x
,對(duì)任意x∈[1,+∞),f(2mx)+2mf(x)<0恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在(2x-
2
2
9的展開式中第7項(xiàng)為672,則x的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣A
-1   0
0     2
,B=
1   2
0   6
,則矩陣A-1B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>0,y>0,且
1
x
+
4
y
=1,則xy的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案