設{an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=19,a5+b3=9,則數(shù)列{anbn}的前n項和Sn=
 
考點:等差數(shù)列與等比數(shù)列的綜合,數(shù)列的求和
專題:計算題
分析:先根據(jù)等差數(shù)列、等比數(shù)列的通項,結(jié)合條件,可求數(shù)列{an},{bn}的通項公式,這樣就可以利用錯位相消法,求出數(shù)列{anbn}的前n項和.
解答: 解:設{an}的公差為d,{bn}的公比為q,則由已知條件得
1+2d+q4=19①
1+4d+q2=9②

①×2-②:2q4-q2-28=0,∴q2=4
∵q>0,∴q=2
代入②可得:d=1
∴an=n,bn=2n-1
令cn=anbn,則cn=n×2n-1
∴S=1+2×2+…+n×2n-1
①×2:2S=1×2+2×22+…+n×2n
①-②:-S=1+2+…+2n-1-n×2n
∴-S=
1-2n
1-2
-n×2n,
∴S=(n-1)•2n+1
故答案為:(n-1)•2n+1
點評:等差數(shù)列、等比數(shù)列通項的求解通常運用基本量法,求數(shù)列的和,一定要弄清數(shù)列通項的特征,從而選用適當?shù)姆椒ǎ?/div>
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集I=Z,集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},則有( 。
A、I=(CIA)∪B
B、I=(CIB)∪B
C、I=(CIA)∪(CIB)
D、I=A∪B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[10,20]內(nèi)的所有實數(shù)中,隨機取一個實數(shù)a,則a<15的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=sin3xcosx+cos3xsinx+
3
sin2x

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)已知△ABC的三邊a、b、c對應角為A、B、C,且三角形的面積為S,若
3
2
AB
BC
=S,求f(A)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是雙曲線
x2
9
-
y2
16
=1
右支上一點,F(xiàn)1,F(xiàn)2分別是該雙曲線的左,右焦點,點M為線段PF2的中點.若△OMF2的面積為10,則點P到該雙曲線的左準線的距離為( 。
A、3
2
+
9
5
B、3
5
+
9
5
C、3
5
+
18
5
D、3
2
+
18
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,a2、a3、a5分別是等比數(shù)列{cn}的第4項、第3項、第2項,且a2=8,公差d≠0.
(1)求等比數(shù)列{cn}的通項;
(2)設bn=log2cn,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列計算正確的是( 。
A、a6÷a6=0
B、(-bc)4÷(-bc)2=-bc
C、y4+y6=y10
D、(ab44=a4b16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為銳角,且tanα=
2
-1,函數(shù)f(x)=x2tan2α+x•sin(2α+
π
4
),則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足
(Ⅰ)存在閉區(qū)間A=
π
3
,B=x,C>0
,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));
(Ⅱ)對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c,則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)若x=4時,f(x)是“平底型”函數(shù),求m和n滿足的條件,并說明理由.

查看答案和解析>>

同步練習冊答案