為了考察某種藥物預防疾病的效果,工作人員進行了動物試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表:
藥物試驗列聯(lián)表
患病 未患病 總計
沒服用藥 20 30 50
服用藥 x y 50
總計 M N 100
工作人員曾用分層抽樣的方法從50只服用藥的動物中抽查10個進行重點跟蹤試驗,知道其中患病的有2只.求出列聯(lián)表中數(shù)據(jù)x、y、M、N的值;能夠有97.5%的把握認為藥物有效嗎?
參考數(shù)據(jù)
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考點:獨立性檢驗的應用
專題:綜合題
分析:(1)用分層抽樣的方法,從50只服用藥的動物中抽查10個進行重點跟蹤試驗,其中患病的有2只,這樣可以列出比例式,求出x的值,根據(jù)列聯(lián)表中各個數(shù)據(jù)的關(guān)系,得到另外三個值.
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)代入求觀測值的公式,做出觀測值,把所得的觀測值同參考數(shù)據(jù)進行比較,發(fā)現(xiàn)4.76<5.204,得到?jīng)]有97.5%的把握認為藥物有效.
解答: 解:(1)∵用分層抽樣的方法,
從50只服用藥的動物中抽查10個進行重點跟蹤試驗,其中患病的有2只,
2
10
=
x
50
,
∴x=10,
∴y=50-10=40,
∴M=20+10=30,N=30+40=70,
即x=10,y=40,M=30,N=70.
(2)K2=
100(800-300)2
30×70×50×50
≈4.76<5.204
由參考數(shù)據(jù)知不能夠以97.5%的把握認為藥物有效.
點評:本題考查獨立性檢驗的列聯(lián)表,考查獨立性檢驗的觀測值,考查判斷服藥對于患病是否有效,是一個綜合題,這種問題只有個別的省份作為高考題出現(xiàn)過,要引起注意.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求值:(tan10°-
3
)sin40°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA,
(1)求角B大小
(2)若a=3
3
,c=5,求AC邊上的高h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-x-2m+1>0
(1)若m=
3
2
,求出不等式的解集;
(2)若對任意實數(shù)x,已知不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x+
π
6
)+
3
2
,x∈R.
(1)求函數(shù)f(x)的最小值以及對應的x.
(2)求它單調(diào)增區(qū)間.
(3)函數(shù)f(x)的圖象可以由函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了4次試驗,收集數(shù)據(jù)如下:
零件數(shù)x(個) 10 20 30 40
加工時間y(min) 60 68 75 85
(Ⅰ)求回歸方程;
(Ⅱ)如果加工的零件是50個,預測所要花費的時間.(參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差大于0的等差數(shù)列{an}的前n項和為Sn,{an}的前三項分別加上1,1,3后順次成為某個等比數(shù)列的連續(xù)三項,S5=25.
①求數(shù)列{an}的通項公式;
②令bn=t Sn(t>0),若對一切n∈N*,都有bn+12>2bnbn+2,求t的取值范圍;
③是否存在各項都是正整數(shù)的無窮數(shù)列{cn},使cn+12>2cncn+2對一切n∈N*都成立,若存在,請寫出數(shù)列{cn}的一個通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|x|-|x+1|.
(1)求不等式f(x)≤0的解集A;
(2)若不等式mx+m-1>0對任何x∈A恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是拋物線y2=4x的焦點,M是這條拋物線上的一個動點,P(3,1)是一個定點,則|MP|+|MF|的最小值是
 

查看答案和解析>>

同步練習冊答案