若函數(shù)y=f(x)的值域為[
1
2
,3],則函數(shù)y=
1
f(x)
的值域是
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意得出f(x)∈[
1
2
,3],從而得出
1
f(x)
的取值范圍,即得函數(shù)y=
1
f(x)
的值域.
解答: 解:∵函數(shù)y=f(x)的值域為[
1
2
,3],
∴f(x)∈[
1
2
,3],
∴函數(shù)y=
1
f(x)
在f(x)∈[
1
2
,3]上是減函數(shù),
1
f(x)
∈[
1
3
,2],
∴函數(shù)y=
1
f(x)
的值域是[
1
3
,2];
故答案為:[
1
3
,2].
點評:本題考查了抽象函數(shù)的值域的問題,解題的關(guān)鍵是由f(x)的取值范圍得出
1
f(x)
的取值范圍,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇2月1日至2月12日中的某一天到達該市,并停留3天.
(1)求此人到達當(dāng)日空氣質(zhì)量重度污染的概率;
(2)設(shè)ξ是此人停留期間空氣重度污染的天數(shù),求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,長軸長為2
3

(Ⅰ)求橢圓的方程;
(Ⅱ)若直線y=kx-
1
2
交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足
MA
MB
,若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴(yán)重:
PM2.5日均濃度 0~35 35~75 75~115 115~150 150~250 >250
空氣質(zhì)量級別 一級 二級 三級 四級 五級 六級
空氣質(zhì)量類別 優(yōu) 輕度污染 中度污染 重度污染 嚴(yán)重污染
某市2013年12月1日-12月30日(30天)對空氣質(zhì)量指數(shù)PM2.5進行監(jiān)測,獲得數(shù)據(jù)后得到如圖條形圖.
(1)估計該城市一個月內(nèi)空氣質(zhì)量類別為優(yōu)的概率;
(2)從空氣質(zhì)量級別為三級和四級的數(shù)據(jù)中任取2個,求恰好有一天空氣質(zhì)量類別為中度污染的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的弦,CD是AB的垂直平分線,切線AE與DC的延長線相交于E.若AB=24,AE=20,則圓O的半徑R=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中所有正確的序號是
 

①函數(shù)f(x)=x2-2x+a在區(qū)間(-2,0)和(2,3)內(nèi)各有一個零點,則-3<a<0;
②已知f(x)=
(2-a)x+1,x<1
ax,x≥1
對任意x1≠x2都有
f(x1)-f(x2)
x1-x2
>0
,那么實數(shù)a的范圍是1<a<2;
③用min{a,b,c}表示a,b,c三個數(shù)中的最小值.設(shè)f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為6;
④若函數(shù)y=loga(x2-ax+2)在區(qū)間(-∞,1]上為減函數(shù),則a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,8),
b
=(4,y),
c
=(x,y)(x>0,y>0),若
a
b
,則|
c
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,計算(1+2i)(1-i)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x∈[1,10],執(zhí)行如圖所示的流程圖,則輸出的x不小于63的概率為( 。
A、
7
9
B、
3
7
C、
1
5
D、
1
3

查看答案和解析>>

同步練習(xí)冊答案