用分析法證明:
1
2
+
3
5
-2
考點:反證法與放縮法
專題:分析法
分析:用分析法證明,只需一步步的推出不等式
1
2
+
3
5
-2
的等價條件即可.
解答: 證明:要證
1
2
+
3
5
-2
,
只需證明:
3
-
2
5
-2,
即證(
3
-
2
2(
5
-2)
2
,
只需證明:2
5
6
+1,
即證13>2
6
,
結(jié)論明顯成立.
綜上可知,
1
2
+
3
5
-2
點評:本題主要考察了用分析法證明不等式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

同時投擲兩個骰子,則向上的點數(shù)之差的絕對值為4的概率是( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
4-x2
+
|x|
x
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示.已知正視圖為兩個邊長為1的正方形拼成的矩形,側(cè)視圖是一個長為
3
,寬為1的矩形,俯視圖是底邊長為1的平行四邊形.
(Ⅰ)求該幾何體的體積V;
(Ⅱ)求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若1+sinθ-25cos2θ=0,θ為銳角,求cos
θ
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:-
1
13
x+2
2x2+3x+6
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)φ(x)=lnx.
(1)若曲線g(x)=φ(x)+
a
x
-1在點(2,g(2))處的切線與直線3x+y-1=0平行,求a的值;
(2)求證函數(shù)f(x)=φ(x)-
2(x-1)
x+1
在(0,+∞)上為單調(diào)增函數(shù);
(3)設(shè)m,n∈R+,且m≠n,求證:
m-n
m+n
<|
lnm-lnn
2
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x+1
,點O為坐標(biāo)原點,點An(n,f(n))(n∈N+),若記直線OAn的傾斜角為θn,則tanθ1+tanθ2+…+tanθn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=25與圓x2+y2-6x+8y+m=0的公共弦的長為8,則m=
 

查看答案和解析>>

同步練習(xí)冊答案